Spectroscopy, diffraction and tomography in art and heritage science

Other Authors: Adriaens, Mieke,, Dowsett, Mark,, ScienceDirect (Online service)
Format: Electronic
Language: English
Published: Amsterdam : Elsevier, 2021.
Physical Description: 1 online resource.
Subjects:
Table of Contents:
  • Intro
  • Spectroscopy, Diffraction and Tomography in Art and Heritage Science
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Origins and fundamentals
  • 1. Introduction
  • 2. A brief cultural history of optics and spectroscopy
  • 2.1. Optics
  • 2.2. Light, vision, and spectra
  • 2.3. The two slit experiment
  • 3. The eye as a spectroscope
  • 4. Radiation beams
  • 4.1. Beam energy and momentum
  • 4.2. Wavelength and frequency
  • 4.3. Particles in a beam
  • 4.4. More beam parameters
  • 4.5. Information depth
  • 5. Destructive, nondestructive, invasive, and noninvasive techniques.
  • 5.1. Destructive and nondestructive
  • 5.2. Microdestructive techniques
  • 5.3. Noninvasive analysis
  • 5.4. How to approach a truly nondestructive analysis
  • References
  • Chapter 2: Raman and infrared spectroscopy in conservation and restoration
  • 1. Raman and infrared spectroscopy in conservation and restoration
  • 2. Introduction to vibrational spectroscopy
  • 3. Raman spectroscopy
  • 3.1. Laboratory Raman analysis
  • 3.1.1. Applications
  • 3.1.2. Selection of an appropriate laser
  • 3.2. Direct and on-site Raman spectroscopy
  • 3.2.1. Applications.
  • 3.2.2. Comparison of two mobile instruments
  • 3.3. Other Raman approaches and techniques
  • 4. Infrared spectroscopy
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter 3: Spectroscopy and diffraction using the electron microscope
  • 1. Basic principles and main outlines
  • 2. Electron/matter interactions
  • 3. Scanning electron microscopy
  • 3.1. Imaging modes
  • 3.2. Spectroscopy analysis
  • 3.3. Diffraction
  • 4. Transmission electron microscopy
  • 4.1. Sample preparation
  • 4.2. The instrument
  • 4.3. Electron diffraction (SAED and CBED)
  • 4.4. Imaging modes.
  • 4.4.1. Amplitude contrast (BF and DF)
  • 4.4.2. Phase contrast (HRTEM)
  • 4.5. Chemical analysis
  • 5. Scanning transmission electron microscopy
  • 5.1. Principle
  • 5.2. STEM imaging (BF, DF, HAADF)
  • 5.3. STEM-EDX
  • 5.4. STEM-EELS
  • 5.5. STEM-PACOM (precession-assisted crystal orientation mapping)
  • 5.6. Beam damage
  • 6. Conclusions
  • Acknowledgment
  • References
  • Chapter 4: UV-visible-near IR reflectance spectrophotometry in a museum environment
  • 1. Introduction
  • 2. Advantages and limitations of UV-vis-NIR reflectance spectroscopy for the analysis of museum objects.
  • 3. Instrumentation, setup and data processing methods
  • 4. Complementary methods
  • 5. Research questions and case studies
  • 5.1. Cross-disciplinary research on medieval and Renaissance illuminated manuscripts
  • 5.2. Getting it right: Identification of gemstones in historical jewelry
  • 5.3. Recovering lost pigments and revealing construction techniques of medieval polychrome wood sculpture
  • 6. Where next?
  • Acknowledgments
  • References
  • Chapter 5: Neutron and X-ray tomography in cultural heritage studies
  • 1. Introduction: The aim of cultural heritage studies with tomography methods.