Rheology of non-spherical particle suspensions

Other Authors: Chinesta, Francisco,, Ausias, Gilles,, ScienceDirect (Online service)
Format: eBook
Language: English
Published: London : ISTE Press, 2015.
Physical Description: 1 online resource.
Subjects:
Item Description: Includes bibliographical references and index.
Front Cover; Rheology of Non-spherical Particle Suspensions; Copyright; Contents; Preface; Chapter 1: Introduction to Suspension Rheology; 1.1. Introduction; 1.2. General Bulk Suspension Properties; 1.3. Dilute Suspension of Rigid Spheres; 1.4. Dilute Suspension of Spherical Droplets; 1.5. Dilute Suspension of Rigid Spheroids; 1.6. Bibliography; Chapter 2: Rheological Characterization of Fiber Suspensions and Nanocomposites; 2.1. General Considerations; 2.2. Suspensions of Fibers; 2.3. Nanocomposites; 2.4. Concluding Remarks; 2.5. Bibliography.
Chapter 3: Rheology of Carbon Nanoparticle Suspensions and Nanocomposites3.1. Introduction; 3.2. Diffusivity of Nanoparticles; 3.3. Fraactal Particlees: Carbon Black; 3.4. Aggregated Particles: Graphite Oxide Derivatives and Carbon Nanotubes; 3.5. Analogy Between Shear Modulus of Nanocomposites and Shear Viscosity of Suspensions; 3.6. Conclusion; 3.7. Bibliography; Chapter 4: Rheological Modeling of Non-dilute Rod Suspensions; 4.1. Introduction; 4.2. Intrinsic Properties of Fibers; 4.3. Description of Fiber Orientation States; 4.4. Orientation Evolution Equations.
4.5. Rheological Equations for Fiber Suspensions4.6. Closure Approximations; 4.7. Concluding Remarks; 4.8. Bibliography; Chapter 5: Rheology of Highly Concentrated Fiber Suspensions; 5.1. Introduction; 5.2. Experimental Trends Observed at Macro- and Mesoscales; 5.3. Microstructure and Micromechanics; 5.4. Rheological models: Single-Phase Approaches; 5.5. Rheological Models: A Two-Phase Approach; 5.6. Conclusion; 5.7. Bibliography; Chapter 6: Towards a Kinetic Theory Description of Electrical Conduction in Perfectly Dispersed CNT Nanocomposites; 6.1. Introduction.
6.2. Orientation Induced by the Electric Field6.3. Introducing Randomizing Mechanisms; 6.4. Proper Generalized Decomposition and Parametric Solutions; 6.5. Electrical Properties; 6.6. Numerical Results; 6.7. Conclusions; 6.8. Bibliography; Chapter 7: Stick-Slip Instabilities in Magnetorheological Fluids; 7.1. Introduction; 7.2. Materials and Methods; 7.3. Expperimental Results; 7.4. Theory and Discussion; 7.5. Conclusions; 7.6. Acknowledgments; 7.7. Bibliography; Chapter 8: Numerical Simulations of Viscoelastic Suspension Fluid Dynamics; 8.1. Introduction; 8.2. Mathematical Model.
8.3. Shear Flow -- 8.4. Poiseuille Flow; 8.5. Summary; 8.6. Bibliography; Chapter 9: Brownian Dynamics Simulation for Spheroid Particle Suspensions in Polymer Solution; 9.1. Introduction; 9.2. Modeling of Spheroid Particles and Polymer Solutions; 9.3. Basic Equations of the Brownian Dynamics Simulation for Suspensions of Spheroid Particles in Polymer Solution; 9.4. Example of Brownian Dynamics Simulation of Disk-Like Particle/Polymer System; 9.5. Summmary; 9.6. Bibliography; Chapter 10: Multiscale Mechanics and Thermodynamics of Suspensions; 10.1. Introduction; 10.2. Rheological Modeling.
Elsevier ScienceDirect All Books.
Physical Description: 1 online resource.
Bibliography: Includes bibliographical references and index.
ISBN: 9780081008126
0081008120