Computational fluid dynamics principles and applications /

Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of...

Full description

Main Author: Blazek, Jiri,
Other Authors: ScienceDirect (Online service)
Format: eBook
Language: English
Published: Amsterdam ; San Diego : Butterworth Heinemann, [2015]
Physical Description: 1 online resource.
Edition: Third edition.
Subjects:
LEADER 06433cam a2200733Ii 4500
001 908335721
003 OCoLC
005 20180526095839.1
006 m o d
007 cr cnu|||unuuu
008 150504s2015 ne ob 001 0 eng d
019 |a 908512045 
020 |a 9780128011720  |q (electronic bk.) 
020 |a 0128011726  |q (electronic bk.) 
020 |z 9780080999951 
035 |a (OCoLC)908335721  |z (OCoLC)908512045 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d DG1  |d UIU  |d YDXCP  |d EBLCP  |d E7B  |d OCLCO  |d DEBSZ  |d OCLCF  |d OCLCO  |d IDEBK  |d OCLCO  |d VGM  |d NRC  |d OCLCQ  |d OCL 
049 |a COM6 
050 4 |a QA911 
072 7 |a TEC  |x 014000  |2 bisacsh 
082 0 4 |a 532.05  |2 23 
100 1 |a Blazek, Jiri,  |e author. 
245 1 0 |a Computational fluid dynamics :  |b principles and applications /  |c Jiri Blazek, PhD. 
250 |a Third edition. 
264 1 |a Amsterdam ;  |a San Diego :  |b Butterworth Heinemann,  |c [2015] 
264 4 |c ©2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 5, 2015). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Computational Fluid Dynamics: Principles and Applications; Copyright; Contents; Acknowledgments; List of Symbols; Abbreviations; Chapter 1: Introduction; Chapter 2: Governing Equations; 2.1 The Flow and Its Mathematical Description; 2.1.1 Finite control volume; 2.2 Conservation Laws; 2.2.1 The continuity equation; 2.2.2 The momentum equation; 2.2.3 The energy equation; 2.3 Viscous Stresses; 2.4 Complete System of the Navier-Stokes Equations; 2.4.1 Formulation for a perfect gas; 2.4.2 Formulation for a real gas; 2.4.3 Simplifications to the Navier-Stokes equations. 
505 8 |a Thin shear layer approximationParabolized Navier-Stokes equations; Euler equations; References; Chapter 3: Principles of Solution of the Governing Equations; 3.1 Spatial Discretization; 3.1.1 Finite-difference method; 3.1.2 Finite-volume method; 3.1.3 Finite-element method; 3.1.4 Other discretization methods; Spectral-element method; Lattice Boltzmann method; Gridless method; 3.1.5 Central and upwind schemes; Central schemes; Upwind schemes; Flux-vector splitting schemes; Flux-difference splitting schemes; TVD Schemes; Fluctuation-splitting schemes; Solution reconstruction. 
505 8 |a First- and second-order schemesENO/WENO Schemes; Central versus upwind schemes; Upwind schemes for real gas flows; 3.2 Temporal Discretization; 3.2.1 Explicit schemes; 3.2.2 Implicit schemes; 3.3 Turbulence Modeling; 3.4 Initial and Boundary Conditions; References; Chapter 4: Structured Finite-Volume Schemes; 4.1 Geometrical Quantities of a Control Volume; 4.1.1 Two-dimensional case; 4.1.2 Three-dimensional case; 4.2 General Discretization Methodologies; 4.2.1 Cell-centered scheme; 4.2.2 Cell-vertex scheme: overlapping control volumes; 4.2.3 Cell-vertex scheme: dual control volumes. 
505 8 |a 4.2.4 Cell-centered versus cell-vertex schemes4.3 Discretization of the Convective Fluxes; 4.3.1 Central scheme with artificial dissipation; Scalar dissipation scheme; Matrix dissipation scheme; 4.3.2 Flux-vector splitting schemes; Van Leer's scheme; AUSM; CUSP scheme; 4.3.3 Flux-difference splitting schemes; Roe upwind scheme; 4.3.4 Total variation diminishing schemes; Upwind TVD scheme; 4.3.5 Limiter functions; Limiter functions for MUSCL interpolation; MUSCL scheme with =0; MUSCL scheme with =1/3; Limiter for CUSP scheme; Limiter for TVD scheme; 4.4 Discretization of the Viscous Fluxes. 
505 8 |a 4.4.1 Cell-centered scheme4.4.2 Cell-vertex scheme; References; Chapter 5: Unstructured Finite-Volume Schemes; 5.1 Geometrical Quantities of a Control Volume; 5.1.1 Two-dimensional case; Triangular element; Quadrilateral element; Element center; 5.1.2 Three-dimensional case; Triangular face; Quadrilateral face; Volume; Cell centroid; 5.2 General Discretization Methodologies; 5.2.1 Cell-centered scheme; 5.2.2 Median-dual cell-vertex scheme; 5.2.3 Cell-centered versus median-dual scheme; Accuracy; Computational work; Memory requirements; Grid generation/adaptation. 
520 |a Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new. 
590 |a Elsevier  |b ScienceDirect All Books. 
650 0 |a Computational fluid dynamics. 
650 0 |a Fluid dynamics  |x Mathematical models. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Hydraulics.  |2 bisacsh. 
650 7 |a Computational fluid dynamics.  |2 fast. 
650 7 |a Fluid dynamics  |x Mathematical models.  |2 fast. 
655 4 |a Electronic books. 
710 2 |a ScienceDirect (Online service) 
776 0 8 |i Print version:  |a Blazek, Jiri.  |t Computational Fluid Dynamics: Principles and Applications.  |d Burlington : Elsevier Science, ©2015  |z 9780080999951. 
907 |a .b49863940  |b multi  |c -  |d 160302  |e 230104 
998 |a cue  |a cu  |b 180626  |c m  |d z   |e -  |f eng  |g ne   |h 0  |i 2 
948 |a MARCIVE Comp, in 2023.01 
948 |a MARCIVE Comp, 2019.12 
948 |a MARCIVE Q2, 2018 
948 |a MARCIVE Comp, 2018.05 
948 |a MARCIVE August, 2017 
948 |a MARCIVE extract Aug 5, 2017 
994 |a 92  |b COM 
995 |a Loaded with m2btab.ltiac in 2023.01 
995 |a Loaded with m2btab.ltiac in 2019.12 
995 |a Loaded with m2btab.ltiac in 2018.08 
995 0 0 |a OCLC offline update by CMU and loaded with m2btab.elec in 2018.06 
995 |a Loaded with m2btab.ltiac in 2018.06 
995 |a Loaded with m2btab.ltiac in 2017.09 
995 |a Loaded with m2btab.netlib2 in 2016 
989 |d cueme  |e  - -   |f  - -   |g j   |h 0  |i 0  |j 188  |k 180626  |l $0.00  |m    |n  - -   |o -  |p 0  |q 0  |t 0  |x 0  |w Elsevier  |1 .i119661561  |u http://ezproxy.coloradomesa.edu/login?url=https://www.sciencedirect.com/science/book/9780080999951  |3 Elsevier  |z Click here for access