Statistical and thermal physics an introduction /

"Concepts and relationships in thermal and statistical physics form the foundation for describing systems consisting of macroscopically large numbers of particles. Developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal...

Full description

Main Author: Hoch, M. J. R. 1936-
Format: Book
Language: English
Published: Boca Raton, FL : Taylor & Francis, [2011]
Physical Description: xxv, 423 pages : illustrations ; 25 cm.
Subjects:
Table of Contents:
  • Machine generated contents note: Section IA Introduction To Classical Thermal Physics Concepts: The First And Second Laws Of Thermodynamics
  • ch. 1 Introduction: Basic Concepts
  • 1.1.Statistical And Thermal Physics
  • 1.2.Temperature
  • 1.3.Ideal Gas Equation Of State
  • 1.4.Equations Of State For Real Gases
  • 1.5.Equation Of State For A Paramagnet
  • 1.6.Kinetic Theory Of Gases And The Equipartition Of Energy Theorem
  • 1.7.Thermal Energy Transfer Processes: Heat Energy
  • Problems Chapter 1
  • ch. 2 Energy: The First Law
  • 2.1.The First Law Of Thermodynamics
  • 2.2.Application Of The First Law To A Fluid System
  • 2.3.Terminology
  • 2.4.P-V Diagrams
  • 2.5.Quasi-Static Adiabatic Processes For An Ideal Gas
  • 2.6.Magnetic Systems
  • 2.7.Paramagnetic Systems
  • 2.8.Magnetic Cooling
  • 2.9.General Expression For Work Done
  • 2.10.Heat Capacity
  • 2.11.Quasi-Static Adiabatic Process For An Ideal Gas Revisited
  • 2.12.Thermal Expansion Coefficient And Isothermal Compressibility
  • Problems Chapter 2
  • ch. 3 Entropy: The Second Law
  • 3.1.Introduction
  • 3.2.Heat Engines-The Carnot Cycle
  • 3.3.Carnot Refrigerator
  • 3.4.Entropy
  • 3.5.Entropy Changes For Reversible Cyclic Processes
  • 3.6.Entropy Changes In Irreversible Processes
  • 3.7.The Second Law Of Thermodynamics
  • 3.8.The Fundamental Relation
  • 3.9.Entropy Changes And T-5 Diagrams
  • 3.10.The Kelvin Temperature Scale
  • 3.11.Alternative Statements Of The Second Law
  • 3.12.General Formulation
  • 3.13.The Thermodynamic Potentials
  • Problems Chapter 3
  • Section IB Microstates And The Statistical Interpretation Of Entropy
  • ch. 4 Microstates For Large Systems
  • 4.1.Introduction
  • 4.2.Microstates-Classical Phase Space Approach
  • 4.3.Quantum Mechanical Description Of An Ideal Gas
  • 4.4.Quantum States For An Ideal Localized Spin System
  • 4.5.The Number Of Accessible Quantum States
  • Problems Chapter 4
  • ch. 5 Entropy And Temperature: Microscopic Statistical Interpretation
  • 5.1.Introduction: The Fundamental Postulate
  • 5.2.Equilibrium Conditions For Two Interacting Spin Systems
  • 5.3.General Equilibrium Conditions For Interacting Systems: Entropy And Temperature
  • 5.4.The Entropy Of Ideal Systems
  • 5.5.Thermodynamic Entropy And Accessible States Revisited
  • Problems Chapter 5
  • ch. 6 Zero Kelvin And The Third Law
  • 6.1.Introduction
  • 6.2.Entropy And Temperature
  • 6.3.Temperature Parameter For An Ideal Spin System
  • 6.4.Temperature Parameter For An Ideal Gas
  • 6.5.The Approach To T =ok
  • 6.6.Entropy-Squeezing Processes
  • 6.7.Multistage Processes
  • 6.8.The Third Law
  • 6.9.Summary Of The Laws Of Thermodynamics
  • Problems Chapter 6
  • Section IC Applications Of Thermodynamics To Gases And Condensed Matter, Phase Transitions, And Critical Phenomena
  • ch. 7 Applications Of Thermodynamics To Gases: The Maxwell Relations
  • 7.1.Introduction
  • 7.2.Enthalpy
  • 7.3.Helmholtz Potential F
  • 7.4.Gibbs Potential G
  • 7.5.The Gibbs Potential, The Helmholtz Potential, And The Chemical Potential
  • 7.6.Chemical Equilibrium
  • 7.7.Maxwell's Thermodynamic Relations
  • 7.8.Applications Of The Maxwell Relations
  • 7.9.The Entropy Equations
  • Problems Chapter 7
  • ch. 8 Applications Of Thermodynamics To Condensed Matter
  • 8.1.Introduction
  • 8.2.Specific Heats Of Solids-The Law Of Dulong And Petit
  • 8.3.Heat Capacities Of Liquids
  • 8.4.The Specific Heat Difference Cp-Cv
  • 8.5.Application Of The Entropy Equations To Solids And Liquids
  • 8.6.Maxwell Relations For A Magnetic System
  • 8.7.Applications Of The Maxwell Relations To Ideal Paramagnetic Systems
  • Problems Chapter 8
  • ch. 9 Phase Transitions And Critical Phenomena
  • 9.1.Introduction
  • 9.2.Nonideal Systems
  • 9.3.Classification Of Phase Transitions
  • 9.4.The Clausius-Clapeyron And The Ehrenfest Equations
  • 9.5.Critical Exponents For Continuous Phase Transitions
  • 9.6.Landau Theory Of Continuous Transitions
  • Problems Chapter 9
  • Section IIA The Canonical And Grand Canonical Ensembles And Distributions
  • ch. 10 Ensembles And The Canonical Distribution
  • 10.1.Introduction
  • 10.2.Statistical Methods: Introduction To Probability Theory
  • 10.2.1.Discrete Variables And Continuous Variables
  • 10.2.2.Joint Probabilities
  • 10.2.3.The Binomial Distribution
  • 10.3.Ensembles In Statistical Physics
  • 10.4.The Canonical Distribution
  • 10.5.Calculation Of Thermodynamic Properties For A Spin System Using The Canonical Distribution
  • 10.6.Relationship Between The Partition Function And The Helmholtz Potential
  • 10.7.Fluctuations
  • 10.8.Choice Of Statistical Ensemble
  • 10.9.The Boltzmann Definition Of The Entropy
  • 10.10.The Partition Function For An Ideal Gas
  • Problems Chapter 10
  • ch. 11 The Grand Canonical Distribution
  • 11.1.Introduction
  • 11.2.General Equilibrium Conditions
  • 11.3.The Grand Canonical Distribution
  • 11.4.The Grand Canonical Distribution Applied To An Ideal Gas
  • 11.5.Mean Values
  • 11.6.Relationship Between The Partition Function And The Grand Sum
  • 11.7.The Grand Potential
  • Problems Chapter 11
  • Section IIB Quantum Distribution Functions, Fermi-Drac And Bose-Einstein Statistics, Photons, And Phonons
  • ch. 12 The Quantum Distribution Functions
  • 12.1.Introduction: Fermions And Bosons
  • 12.2.Quantum Distributions
  • 12.3.The FD Distribution
  • 12.4.The BE Distribution
  • 12.5.Fluctuations
  • 12.6.The Classical Limit
  • 12.7.The Equation Of State
  • Problems Chapter 12
  • ch. 13 Ideal Fermi Gas
  • 13.1.Introduction
  • 13.2.The Fermi Energy
  • 13.3.Fermi Sphere In Momentum Space
  • 13.4.Mean Energy Of Ideal Fermi Gas At T K
  • 13.5.Approximate Expressions For The Heat Capacity And Magnetic Susceptibility Of An Ideal Fermi Gas
  • 13.6.Specific Heat Of A Fermi Gas
  • 13.7.Pauli Paramagnetism
  • 13.8.The Pressure Of A Fermi Gas
  • 13.9.Stars And Gravitational Collapse
  • Problems Chapter 13
  • ch. 14 Ideal Bose Gas
  • 14.1.Introduction
  • 14.2.Low-Temperature Behavior Of The Chemical Potential
  • 14.3.The Bose[-]Einstein Condensation Temperature
  • 14.4.Heat Capacity Of An Ideal Bose Gas
  • 14.5.The Pressure And Entropy Of A Bose Gas At Low Temperatures
  • 14.6.The Bose-Einstein Condensation Phenomena In Various Systems
  • Problems Chapter 14
  • ch. 15 Photons And Phonons-The "Planck Gas"
  • 15.1.Introduction
  • 15.2.Electromagnetic Radiation In A Cavity
  • 15.3.The Planck Distribution
  • 15.4.The Radiation Laws
  • 15.5.Radiation Pressure And The Equation Of State For Radiation In An Enclosure
  • 15.6.Phonons In Crystalline Solids
  • 15.7.The Specific Heat Of A Solid
  • 15.8.The Einstein Model For The Specific Heat Of Solids
  • 15.9.The Debye Model For The Specific Heat Of Solids
  • Problems Chapter 15
  • Section IIC The Classical Ideal Gas, Maxwell-Boltzmann Statistics, Nonideal Systems
  • ch. 16 The Classical Ideal Gas
  • 16.1.Introduction
  • 16.2.The Partition Function For An Ideal Classical Gas
  • 16.3.Thermodynamics Of An Ideal Gas
  • 16.4.Classical Mechanics Description Of The Ideal Gas
  • 16.5.Ideal Gas Of Particles With Internal Energies
  • 16.6.Proof Of The Equipartition Of Energy Theorem
  • 16.7.The Maxwell Velocity Distribution
  • Problems Chapter 16
  • ch. 17 Nonideal Systems
  • 17.1.Introduction
  • 17.2.Non Ideal Gases
  • 17.3.Equations Of State For Nonideal Gases
  • 17.4.Nonideal Spin Systems: Mean Field Theory
  • 17.5.Introduction To The (Sing Model
  • 17.6.Fermi Liquids
  • 17.7.Nonideal Bose Systems-Bose Liquids
  • Problems Chapter 17
  • Section IID The Density Matrix, Reactions And Related Processes, And Introduction To Irreversible Thermodynamics
  • ch. 18 The Density Matrix
  • 18.1.Introduction
  • 18.2.The Density Matrix Formalism
  • 18.3.Form Of The Density Matrix In The Three Statistical Ensembles
  • 18.4.Density Matrix Calculations
  • 18.5.Polarized Particle Beams
  • 18.6.Connection Of The Density Matrix To The Classical Phase Space Representation
  • Problems Chapter 18
  • ch.
  • 19 Reactions And Related Processes
  • 19.1.Introduction
  • 19.2.The Partition Function For A Gaseous Mixture Of Different Molecular Species
  • 19.3.The Law Of Mass Action
  • 19.4.Adsorption On Surfaces
  • 19.5.Charge Carriers In Semiconductors
  • Problems Chapter 19
  • ch. 20 Introduction To Irreversible Thermodynamics
  • 20.1.Introduction
  • 20.2.Entropy Production In Heat Flow Processes
  • 20.3.Entropy Production In Coupled Flow Processes
  • 20.4.Thermo-Osmosis, Thermomolecular Pressure Difference, And Thermomechanical Effect
  • 20.5.Thermoelectricity
  • 20.6.The Seebeck And Peltier Effects
  • 20.7.The Thomson Effect
  • Problems Chapter 20
  • Finite Series Summations
  • Stirling's Formula For The Logarithm Of Ni
  • Definite Integrals Involving Exponential Functions
  • Gaussian Approximation To The Binomial Distribution
  • Particle In A Box Eigenstates And Eigenvalues
  • The Harmonic Oscillator
  • State Vectors And Dirac Notation
  • Introduction To the Legendre Transform
  • The Legendre Transform And Thermodynamic Potentials
  • Introductory Level
  • Advanced Level
  • Computer Simulations.