Particles and astrophysics a multi-messenger approach /

This book is an introduction to "multi-messenger" astrophysics. It covers the many different aspects connecting particle physics with astrophysics and cosmology and introduces astrophysics using numerous experimental findings recently obtained through the study of high-energy particles. Ta...

Full description

Main Author: Spurio, Maurizio,
Other Authors: SpringerLink (Online service)
Format: eBook
Language: English
Published: Switzerland : Springer, [2015]
Physical Description: 1 online resource (498 pages) : illustrations.
Series: Astronomy and astrophysics library.
Subjects:
Table of Contents:
  • Machine generated contents note:
  • 1.
  • Overview of Astroparticle Physics
  • 1.1.
  • Introduction
  • 1.1.1.
  • Astrophysics and Astroparticle Physics
  • 1.1.2.
  • Discoveries and Experiments Not Covered in This Book
  • 1.2.
  • Cosmic Rays
  • 1.3.
  • Gamma-Rays of GeV and TeV Energies
  • 1.4.
  • Neutrino Astrophysics
  • 1.5.
  • Dark Universe
  • 1.6.
  • Laboratories and Detectors for Astroparticle Physics
  • 1.6.1.
  • Space Experiments
  • 1.6.2.
  • Experiments in the Atmosphere
  • 1.6.3.
  • Ground-Based Experiments
  • 1.7.
  • Underground Laboratories for Rare Events
  • References
  • 2.
  • Cosmic Rays and Our Galaxy
  • 2.1.
  • Discovery of Cosmic Rays
  • 2.2.
  • Cosmic Rays and the Early Days of Particle Physics
  • 2.3.
  • Discovery of the Positron and Particle Detectors
  • 2.3.1.
  • Motion in a Magnetic Field and the Particle Rigidity
  • 2.3.2.
  • Identification of the Positron
  • 2.4.
  • Toy Telescope for Primary Cosmic Rays
  • 2.5.
  • Differential and Integral Flux
  • 2.6.
  • Energy Spectrum of Primary Cosmic Rays
  • 2.7.
  • Physical Properties of the Galaxy
  • 2.7.1.
  • Galactic Magnetic Field
  • 2.7.2.
  • Interstellar Matter Distribution
  • 2.8.
  • Low-Energy Cosmic Rays from the Sun
  • 2.9.
  • Effect of the Geomagnetic Field
  • 2.10.
  • Number and Energy Density of the Cosmic Rays
  • 2.11.
  • Energy Considerations on Cosmic Ray Sources
  • References
  • 3.
  • Direct Cosmic Rays Detection: Protons, Nuclei, Electrons and Antimatter
  • 3.1.
  • Generalities on Direct Measurements
  • 3.2.
  • Calorimetric Technique
  • 3.2.1.
  • Hadronic Interaction Length and Mean Free Path
  • 3.2.2.
  • Electromagnetic Radiation Length
  • 3.2.3.
  • Hadronic Interaction Length and Mean Free Path in the Atmosphere
  • 3.3.
  • Balloon Experiments
  • 3.4.
  • Satellite Experiments
  • 3.4.1.
  • IMP Experiments
  • 3.4.2.
  • PAMELA Experiment
  • 3.5.
  • AMS-02 Experiment on the International Space Station
  • 3.6.
  • Abundances of Elements in the Solar System and in CRs
  • 3.6.1.
  • Cosmic Abundances of Elements
  • 3.7.
  • Energy Spectrum of CR Protons and Nuclei
  • 3.8.
  • Antimatter in Our Galaxy
  • 3.9.
  • Electrons and Positrons
  • 3.9.1.
  • Positron Component
  • 3.9.2.
  • Considerations on the e+, e- Components
  • References
  • 4.
  • Indirect Cosmic Rays Detection: Particle Showers in the Atmosphere
  • 4.1.
  • Introduction and Historical Information
  • 4.2.
  • Structure of the Atmosphere
  • 4.3.
  • Electromagnetic (EM) Cascade
  • 4.3.1.
  • Heitler's Model of EM Showers
  • 4.3.2.
  • Analytic Solutions
  • 4.4.
  • Showers Initiated by Protons and Nuclei
  • 4.4.1.
  • Muon Component in a Proton-Initiated Cascade
  • 4.4.2.
  • EM Component in a Proton-Initiated Cascade
  • 4.4.3.
  • Depth of the Shower Maximum for a Proton Shower
  • 4.4.4.
  • Showers Induced by Nuclei: The Superposition Model
  • 4.5.
  • Monte Carlo Simulations of Showers
  • 4.6.
  • Detectors of Extensive Air Showers at the Energy of the Knee
  • 4.6.1.
  • Toy Example of an EAS Array
  • 4.6.2.
  • Some EAS Experiments
  • 4.6.3.
  • Cherenkov Light Produced by EAS Showers
  • 4.7.
  • Time Profile of Cascades
  • 4.8.
  • Arrival Direction of CRs as Measured with EAS Arrays
  • 4.9.
  • CR Flux Measured with EAS Arrays
  • 4.10.
  • Mass Composition of CRs Around the Knee
  • 4.10.1.
  • Ne Versus N? Method
  • 4.10.2.
  • Depth of the Shower Maximum
  • References
  • 5.
  • Diffusion of Cosmic Rays in the Galaxy
  • 5.1.
  • Overabundance of Li, Be, and B in CRs
  • 5.1.1.
  • Production of Li, Be, and B During Propagation
  • 5.2.
  • Dating of Cosmic Rays with Radioactive Nuclei
  • 5.2.1.
  • Unstable Secondary-to-Primary Ratios
  • 5.3.
  • Diffusion-Loss Equation
  • 5.3.1.
  • Diffusion Equation with Nuclear Spallation
  • 5.3.2.
  • Numerical Estimate of the Diffusion Coefficient D
  • 5.4.
  • Leaky box Model and its Evolutions
  • 5.5.
  • Energy-Dependence of the Escape Time ?esc
  • 5.6.
  • Energy Spectrum of Cosmic Rays at the Sources
  • 5.7.
  • Anisotropies due to the Diffusion
  • 5.7.1.
  • Compton
  • Getting Effect
  • 5.8.
  • Electron Energy Spectrum at the Sources
  • 5.8.1.
  • Synchrotron Radiation
  • 5.8.2.
  • Measured Energy Spectrum of Electrons
  • 5.8.3.
  • Average Distance of Accelerators of Electrons
  • References
  • 6.
  • Acceleration Mechanisms and Galactic Cosmic Ray Sources
  • 6.1.
  • Second- and First-Order Fermi Acceleration Mechanisms
  • 6.1.1.
  • Magnetic Mirrors
  • 6.1.2.
  • Second-Order Fermi Acceleration Mechanism
  • 6.1.3.
  • First-Order Fermi Acceleration Mechanism
  • 6.1.4.
  • Power-Law Energy Spectrum from the Fermi Model
  • 6.2.
  • Diffusive Shock Acceleration in Strong Shock Waves
  • 6.2.1.
  • Supernova Explosions and Cosmic Rays Acceleration
  • 6.2.2.
  • Relevant Quantities in a Supernova Explosion
  • 6.3.
  • Maximum Energy Attainable in the Supernova Model
  • 6.4.
  • Spectral Index of the Energy Spectrum
  • 6.4.1.
  • Escape Probability
  • 6.4.2.
  • Shock Front in a Mono-Atomic Gas
  • 6.5.
  • Success and Limits of the Standard Model of Cosmic Ray Acceleration
  • 6.6.
  • White Dwarfs and Neutron Stars
  • 6.6.1.
  • White Dwarfs
  • 6.6.2.
  • Neutron Stars and Pulsars
  • 6.7.
  • Possible Galactic Sources of Cosmic Rays Above the Knee
  • 6.7.1.
  • Simple Model Involving Pulsars
  • 6.7.2.
  • Simple Model Involving Binary Systems
  • References
  • 7.
  • Ultra High Energy Cosmic Rays
  • 7.1.
  • Observational Cosmology and the Universe
  • 7.2.
  • Large-Scale Structure of the Universe
  • 7.3.
  • Anisotropy of UHECRs: The Extragalactic Magnetic Fields
  • 7.4.
  • Quest for Extragalactic Sources of UHECRs
  • 7.5.
  • Propagation of UHECRs
  • 7.5.1.
  • Adiabatic Energy Loss
  • 7.5.2.
  • Propagation in the CMB: The GZK Cut-Off
  • 7.5.3.
  • e± Pair Production by Protons on the CMB
  • 7.5.4.
  • Propagation in the Extragalactic Magnetic Field
  • 7.6.
  • Fluorescence Light and Fluorescence Detectors
  • 7.7.
  • UHECR Measurements with a Single Technique
  • 7.7.1.
  • Results from HiRes and AGASA
  • 7.8.
  • Large Hybrid Observatories of UHECRs
  • 7.9.
  • Flux of UHECRs
  • 7.10.
  • Chemical Composition of UHECRs
  • 7.11.
  • Correlation of UHECRs with Astrophysical Objects
  • 7.12.
  • Constraints on Top-Down Models
  • 7.13.
  • Summary and Discussion of the Results
  • References
  • 8.
  • Sky Seen in ?-rays
  • 8.1.
  • Spectral Energy Distribution (SED) and Multiwavelength Observations
  • 8.2.
  • Astrophysical ?-rays: The Hadronic Model
  • 8.2.1.
  • Energy Spectrum of ?-rays from ?° Decay
  • 8.3.
  • Galactic Sources and ?-rays
  • 8.3.1.
  • Simple Estimate of the ?-ray Flux from a Galactic Source
  • 8.4.
  • Astrophysical ?-rays: The Leptonic Model
  • 8.4.1.
  • Synchrotron Radiation from a Power-Law Spectrum
  • 8.4.2.
  • Synchrotron Self-Absorption
  • 8.4.3.
  • Inverse Compton Scattering and SSC
  • 8.5.
  • Compton Gamma Ray Observatory Legacy
  • 8.5.1.
  • EGRET ?-ray Sky
  • 8.6.
  • Fermi-LAT and Other Experiments for ?-ray Astronomy
  • 8.6.1.
  • Fermi-LAT
  • 8.6.2.
  • AGILE and Swift
  • 8.7.
  • Diffuse ?-rays in the Galactic Plane
  • 8.7.1.
  • Estimate of the Diffuse ?-ray Flux
  • 8.8.
  • Fermi-LAT Catalogs
  • 8.9.
  • Gamma Ray Bursts
  • 8.9.1.
  • Classification of GRBs
  • 8.10.
  • Limits of ?-ray Observations from Space
  • References
  • 9.
  • TeV Sky and Multiwavelength Astrophysics
  • 9.1.
  • Imaging Cherenkov Technique
  • 9.1.1.
  • Gamma-Ray Versus Charged CR Discrimination
  • 9.1.2.
  • HESS, VERITAS and MAGIC
  • 9.2.
  • EAS Arrays for ?-astronomy
  • 9.2.1.
  • Sensitivity of ?-ray Experiments
  • 9.3.
  • TeV Astronomy: The Catalog
  • 9.4.
  • Gamma-Rays from Pulsars
  • 9.5.
  • CRAB Pulsar and Nebula
  • 9.6.
  • Problem of the Identification of Galactic CR Sources
  • 9.7.
  • Extended Supernova Remnants
  • 9.7.1.
  • SED of Some Peculiar SNRs
  • 9.8.
  • Summary of the Study of Galactic Accelerators
  • 9.9.
  • Active Galaxies
  • 9.10.
  • Extragalactic ?-ray Sky
  • 9.11.
  • Spectral Energy Distributions of Blazars
  • 9.11.1.
  • Quasi-Simultaneous.
  • SEDs of Fermi-LAT Blazars
  • 9.11.2.
  • Simultaneous SED Campaigns and Mrk 421
  • 9.12.
  • Jets in Astrophysics
  • 9.12.1.
  • Time Variability in Jets
  • 9.13.
  • Extragalactic Background Light
  • References
  • 10.
  • High-Energy Neutrino Astrophysics
  • 10.1.
  • CRs, ?-rays and Neutrino Connection
  • 10.1.1.
  • Neutrino Detection Principle
  • 10.2.
  • Background in Large Volume Neutrino Detectors
  • 10.3.
  • Neutrino Detectors and Neutrino Telescopes
  • 10.3.1.
  • Muon Neutrino Detection
  • 10.3.2.
  • Showering Events
  • 10.4.
  • Cosmic Neutrino Flux Estimates
  • 10.4.1.
  • Reference Neutrino Flux from a Galactic Source
  • 10.4.2.
  • Extragalactic Diffuse Neutrino Flux
  • 10.4.3.
  • Neutrinos from GRBs
  • 10.4.4.
  • Cosmogenic Neutrinos
  • 10.5.
  • Why km3-Scale Telescopes
  • 10.5.1.
  • Neutrino Effective Area of Real Detectors
  • 10.5.2.
  • Number of Optical Sensors in a Neutrino Telescope
  • 10.6.
  • Water and Ice Properties
  • 10.7.
  • Operating Neutrino Telescopes
  • 10.7.1.
  • Telescope in the Antarctic Ice
  • 10.7.2.
  • Telescope in the Mediterranean Sea
  • 10.8.
  • Results from Neutrino Telescopes
  • 10.8.1.
  • Point-Like Sources
  • 10.8.2.
  • Limits from GRBs and Unresolved Sources
  • 10.9.
  • First Measurement of Cosmic Neutrinos
  • References
  • 11.
  • Atmospheric Muons and Neutrinos
  • 11.1.
  • Nucleons in the Atmosphere
  • 11.2.
  • Secondary Mesons in the Atmosphere
  • 11.3.
  • Muons and Neutrinos from Charged Meson Decays
  • 11.3.1.
  • Conventional Atmospheric Neutrino Flux
  • 11.3.2.
  • Prompt Component in the Muon and Neutrino Flux
  • 11.4.
  • Particle Flux at Sea Level
  • 11.5.
  • Measurements of Muons at Sea Level
  • 11.6.
  • Underground Muons
  • 11.6.1.
  • Depth-Intensity Relation
  • 11.6.2.
  • Characteristics of Underground/Underwater Muons
  • 11.7.
  • Atmospheric Neutrinos
  • 11.7.1.
  • Early Experiments
  • 11.8.
  • Oscillations of Atmospheric Neutrinos.
  • Note continued:
  • 11.9.
  • Measurement of Atmospheric ?? Oscillations in Underground Experiments
  • 11.9.1.
  • Event Topologies in Super-Kamiokande
  • 11.9.2.
  • Iron Calorimeter Soudan 2 Experiment
  • 11.9.3.
  • Upward-Going Muons and MACRO
  • 11.10.
  • Atmospheric ?? Oscillations and Accelerator Confirmations
  • 11.11.
  • Atmospheric Neutrino Flux at Higher Energies
  • References
  • 12.
  • Connections Between Physics and Astrophysics of Neutrinos
  • 12.1.
  • Stellar Evolution of Solar Mass Stars
  • 12.2.
  • Standard Solar Model and Neutrinos
  • 12.3.
  • Solar Neutrino Detection
  • 12.4.
  • SNO Measurement of the Total Neutrino Flux
  • 12.5.
  • Oscillations and Solar Neutrinos
  • 12.6.
  • Oscillations Among Three Neutrino Families
  • 12.6.1.
  • Three Flavor Oscillation and KamLAND
  • 12.6.2.
  • Measurements of ?13
  • 12.7.
  • Matter Effect and Experimental Results
  • 12.8.
  • Summary of Experimental Results and Consequences for Neutrino Astrophysics
  • 12.8.1.
  • Effects of Neutrino Mixing on Cosmic Neutrinos
  • 12.9.
  • Formation of Heavy Elements in Massive Stars
  • 12.10.
  • Stellae Novae
  • 12.11.
  • Core-Collapse Supernovae (Type II)
  • 12.11.1.
  • GRB Supernovae
  • 12.12.
  • Neutrino Signal from a Core-Collapse SN
  • 12.12.1.
  • Supernova Rate and Location
  • 12.12.2.
  • Neutrino Signal
  • 12.12.3.
  • Detection of Supernova Neutrinos
  • 12.13.
  • SN1987A
  • 12.14.
  • Stellar Nucleosynthesis of Trans-Fe Elements
  • References
  • 13.
  • Microcosm and Macrocosm
  • 13.1.
  • Standard Model of the Microcosm: The Big Bang
  • 13.2.
  • Standard Model of Particle Physics and Beyond
  • 13.3.
  • Gravitational Evidence of Dark Matter
  • 13.4.
  • Dark Matter
  • 13.5.
  • Supersymmetry
  • 13.5.1.
  • Minimal Standard Supersymmetric Model
  • 13.5.2.
  • Cosmological Constraints and WIMP
  • 13.6.
  • Interactions of WIMPs with Ordinary Matter
  • 13.6.1.
  • WIMPs Annihilation
  • 13.6.2.
  • WIMPs Elastic Scattering
  • 13.7.
  • Direct Detection of Dark Matter: Event Rates
  • 13.8.
  • WIMPs Direct Detection
  • 13.8.1.
  • Solid-State Cryogenic Detectors
  • 13.8.2.
  • Scintillating Crystals
  • 13.8.3.
  • Noble Liquid Detectors
  • 13.8.4.
  • Present Experimental Results and the Future
  • 13.9.
  • Indirect WIMPs Detection
  • 13.9.1.
  • Neutrinos from WIMP Annihilation in Massive Objects
  • 13.9.2.
  • Gamma-Rays from WIMPs
  • 13.9.3.
  • Positron Excess: A WIMP Signature
  • 13.10.
  • What's Next
  • References.