Advanced electric drives analysis, control, and modeling using MATLAB/Simulink /

"Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformat...

Full description

Main Author: Mohan, Ned.
Other Authors: ProQuest (Firm)
Format: eBook
Language: English
Published: Hoboken, New Jersey : John Wiley & Sons, Inc., 2014.
Physical Description: 1 online resource (xvi, 180 pages) : illustrations.
Series: Ebook Central (EBC)
Subjects:
LEADER 10502cam a2200577 i 4500
001 881387449
003 OCoLC
005 20190226110424.0
006 m o d
007 cr#cn|||||||||
008 140404s2014 njua ob 001 0 eng
010 |a 2014013650 
020 |a 9781118911174  |q (electronic bk.) 
020 |a 1118911172  |q (electronic bk.) 
035 |a (OCoLC)881387449  |z (OCoLC)915730976  |z (OCoLC)927509189  |z (OCoLC)961569453  |z (OCoLC)962663594  |z (OCoLC)992838134  |z (OCoLC)1055315314 
035 |a ebc1744264 
035 |a (OCoLC)ocn881387449 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d E7B  |d DG1  |d YDXCP  |d RECBK  |d CDX  |d COO  |d DEBSZ  |d VT2  |d B24X7  |d DG1  |d COCUF  |d MOR  |d CCO  |d LIP  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d K6U  |d U3W  |d DEBBG  |d OCLCQ  |d STF  |d OCLCF  |d CEF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ 
042 |a pcc 
050 0 0 |a TK4058  |b .M5783 2014eb 
100 1 |a Mohan, Ned. 
245 1 0 |a Advanced electric drives :  |b analysis, control, and modeling using MATLAB/Simulink /  |c Ned Mohan. 
264 1 |a Hoboken, New Jersey :  |b John Wiley & Sons, Inc.,  |c 2014. 
300 |a 1 online resource (xvi, 180 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Ebook Central (EBC) 
504 |a Includes bibliographical references and index. 
520 |a "Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformations for easy visualization Confirms the physics-based analysis of electric drives mathematically Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme Makes the MATLAB/Simulink files used in examples available to anyone in an accompanying website Reinforces fundamentals with a variety of discussion questions, concept quizzes, and homework problems"--  |c Provided by publisher. 
533 |a Electronic reproduction.  |b Ann Arbor, Michigan.  |n Available via World Wide Web. 
538 |a Users at some libraries may be required to establish an individual no-charge EBC account, and log in to access the full text. 
541 |a Permanent access license for participating libraries purchased from ProQuest Ebook Central. 
588 |a Description based on print version record. 
630 0 0 |a MATLAB. 
630 0 0 |a SIMULINK. 
650 0 |a Electric driving  |x Computer simulation. 
650 0 |a Electric motors  |x Mathematical models. 
690 |a Electronic monograph. 
710 2 |a ProQuest (Firm) 
776 0 8 |i Print version:  |a Mohan, Ned.  |t Advanced electric drives.  |d Hoboken, New Jersey : Wiley, 2014  |z 9781118485484  |w (DLC) 2014005496  |w (OCoLC)807025886. 
830 0 |a Ebook Central (EBC) 
880 0 0 |6 505-00  |g Machine generated contents note:  |g 1.  |t Applications: Speed and Torque Control --  |g 1-1.  |t History --  |g 1-2.  |t Background --  |g 1-3.  |t Types of ac Drives Discussed and the Simulation Software --  |g 1-4.  |t Structure of this Textbook --  |g 1-5.  |t "Test" Induction Motor --  |g 1-6.  |t Summary --  |t References --  |t Problems --  |g 2.  |t Induction Machine Equations in Phase Quantities: Assisted by Space Vectors --  |g 2-1.  |t Introduction --  |g 2-2.  |t Sinusoidally Distributed Stator Windings --  |g 2-2-1.  |t Three-Phase, Sinusoidally Distributed Stator Windings --  |g 2-3.  |t Stator Inductances (Rotor Open-Circuited) --  |g 2-3-1.  |t Stator Single-Phase Magnetizing Inductance Lm,1-phase --  |g 2-3-2.  |t Stator Mutual-Inductance Lmutuai --  |g 2-3-3.  |t Per-Phase Magnetizing-Inductance Lm --  |g 2-3-4.  |t Stator-Inductance Ls --  |g 2-4.  |t Equivalent Windings in a Squirrel-Cage Rotor --  |g 2-4-1.  |t Rotor-Winding Inductances (Stator Open-Circuited) --  |g 2-5.  |t Mutual Inductances between the Stator and the Rotor Phase Windings --  |g 2-6.  |t Review of Space Vectors --  |g 2-6-1.  |t Relationship between Phasors and Space Vectors in Sinusoidal Steady State --  |g 2-7.  |t Flux Linkages --  |g 2-7-1.  |t Stator Flux Linkage (Rotor Open-Circuited) --  |g 2-7-2.  |t Rotor Flux Linkage (Stator Open-Circuited) --  |g 2-7-3.  |t Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents) --  |g 2-8.  |t Stator and Rotor Voltage Equations in Terms of Space Vectors --  |g 2-9.  |t Making the Case for a dg-Winding Analysis --  |g 2-10.  |t Summary --  |t Reference --  |t Problems --  |g 3.  |t Dynamic Analysis of Induction Machines in Terms of dq Windings --  |g 3-1.  |t Introduction --  |g 3-2.  |t dq Winding Representation --  |g 3-2-1.  |t Stator dq Winding Representation --  |g 3-2-2.  |t Rotor dq Windings (Along the Same dq-Axes as in the Stator) --  |g 3-2-3.  |t Mutual Inductance between dq Windings on the Stator and the Rotor --  |g 3-3.  |t Mathematical Relationships of the dq Windings (at an Arbitrary Speed u>d) --  |g 3-3-1.  |t Relating dq Winding Variables to Phase Winding Variables --  |g 3-3-2.  |t Flux Linkages of dq Windings in Terms of Their Currents --  |g 3-3-3.  |t dq Winding Voltage Equations --  |g 3-3-4.  |t Obtaining Fluxes and Currents with Voltages as Inputs --  |g 3-4.  |t Choice of the dq Winding Speed }d --  |g 3-5.  |t Electromagnetic Torque --  |g 3-5-1.  |t Torque on the Rotor d-Axis Winding --  |g 3-5-2.  |t Torque on the Rotor d-Axis Winding --  |g 3-5-3.  |t Net Electromagnetic Torque Tem on the Rotor --  |g 3-6.  |t Electrodynamics --  |g 3-7.  |t d- and q-Axis Equivalent Circuits --  |g 3-8.  |t Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State --  |g 3-9.  |t Computer Simulation --  |g 3-9-1.  |t Calculation of Initial Conditions --  |g 3-10.  |t Summary --  |t Reference --  |t Problems --  |g 4.  |t Vector Control of Induction-Motor Drives: A Qualitative Examination --  |g 4-1.  |t Introduction --  |g 4-2.  |t Emulation of dc and Brushless dc Drive Performance --  |g 4-2-1.  |t Vector Control of Induction-Motor Drives --  |g 4-3.  |t Analogy to a Current-Excited Transformer with a Shorted Secondary --  |g 4-3-1.  |t Using the Transformer Equivalent Circuit --  |g 4-4.  |t d- and q-Axis Winding Representation --  |g 4-5.  |t Vector Control with d-Axis Aligned with the Rotor Flux --  |g 4-5-1.  |t Initial Flux Buildup Prior to t ==0- --  |g 4-5-2.  |t Step Change in Torque at t = 0+ --  |g 4-6.  |t Torque, Speed, and Position Control --  |g 4-6-1.  |t Reference Current t*sq(t) --  |g 4-6-2.  |t Reference Current i*sd(t) --  |g 4-6-3.  |t Transformation and Inverse-Transformation of Stator Currents --  |g 4-6-4.  |t Estimated Motor Model for Vector Control --  |g 4-7.  |t Power-Processing Unit (PPU) --  |g 4-8.  |t Summary --  |t References --  |t Problems --  |g 5.  |t Mathematical Description of Vector Control in Induction Machines --  |g 5-1.  |t Motor Model with the d-Axis Aligned Along the Rotor Flux Linkage n[]r-Axis --  |g 5-1-1.  |t Calculation of }dA --  |g 5-1-2.  |t Calculation of Tem --  |g 5-1-3.  |t d-Axis Rotor Flux Linkage Dynamics --  |g 5-1-4.  |t Motor Model --  |g 5-2.  |t Vector Control --  |g 5-2-1.  |t Speed and Position Control Loops --  |g 5-2-2.  |t Initial Startup --  |g 5-2-3.  |t Calculating the Stator Voltages to Be Applied --  |g 5-2-4.  |t Designing the PI Controllers --  |g 5-3.  |t Summary --  |t Reference --  |t Problems --  |g 6.  |t Detuning Effects in Induction Motor Vector Control --  |g 6-1.  |t Effect of Detuning Due to Incorrect Rotor Time Constant xr --  |g 6-2.  |t Steady-State Analysis --  |g 6-2-1.  |t Steady-State isd/i*sd --  |g 6-2-2.  |t Steady-State isq/i*sq --  |g 6-2-3.  |t Steady-State kerr --  |g 6-2-4.  |t Steady-State Tem/T*em --  |g 6-3.  |t Summary --  |t References --  |t Problems --  |g 7.  |t Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control --  |g 7-1.  |t Understanding DFIG Operation --  |g 7-2.  |t Dynamic Analysis of DFIG --  |g 7-3.  |t Vector Control of DFIG --  |g 7-4.  |t Summary --  |t References --  |t Problems --  |g 8.  |t Space Vector Pulse Width-Modulated (SV-PWM) Inverters --  |g 8-1.  |t Introduction --  |g 8-2.  |t Synthesis of Stator Voltage Space Vector p [] as --  |g 8-3.  |t Computer Simulation of SV-PWM Inverter --  |g 8-4.  |t Limit on the Amplitude p s of the Stator Voltage Space Vector p []as --  |t Summary --  |t References --  |t Problems --  |g 9.  |t Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives --  |g 9-1.  |t Introduction --  |g 9-2.  |t System Overview --  |g 9-3.  |t Principle of Encoderless DTC Operation --  |g 9-4.  |t Calculation of n[]s, n[]r, Tem, and }m --  |g 9-4-1.  |t Calculation of the Stator Flux n []s --  |g 9-4-2.  |t Calculation of the Rotor Flux n []r --  |g 9-4-3.  |t Calculation of the Electromagnetic Torque Tem --  |g 9-4-4.  |t Calculation of the Rotor Speed }m --  |g 9-5.  |t Calculation of the Stator Voltage Space Vector --  |g 9-6.  |t Direct Torque Control Using dq-Axes --  |g 9-7.  |t Summary --  |t References --  |t Problems --  |t Appendix 9-A --  |t Derivation of Torque Expressions --  |g 10.  |t Vector Control of Permanent-Magnet Synchronous Motor Drives --  |g 10-1.  |t Introduction --  |g 10-2.  |t d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines --  |g 10-2-1.  |t Flux Linkages --  |g 10-2-2.  |t Stator dq Winding Voltages --  |g 10-2-3.  |t Electromagnetic Torque --  |g 10-2-4.  |t Electrodynamics --  |g 10-2-5.  |t Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State --  |g 10-2-6.  |t dq-Based Dynamic Controller for "Brushless DC" Drives --  |g 10-3.  |t Salient-Pole Synchronous Machines --  |g 10-3-1.  |t Inductances --  |g 10-3-2.  |t Flux Linkages --  |g 10-3-3.  |t Winding Voltages --  |g 10-3-4.  |t Electromagnetic Torque --  |g 10-3-5.  |t dq-Axis Equivalent Circuits --  |g 10-3-6.  |t Space Vector Diagram in Steady State --  |g 10-4.  |t Summary --  |t References --  |t Problems --  |g 11.  |t Switched-Reluctance Motor (SRM) Drives --  |g 11-1.  |t Introduction --  |g 11-2.  |t Switched-Reluctance Motor --  |g 11-2-1.  |t Electromagnetic Torque Tem --  |g 11-2-2.  |t Induced Back-EMF ea --  |g 11-3.  |t Instantaneous Waveforms --  |g 11-4.  |t Role of Magnetic Saturation --  |g 11-5.  |t Power Processing Units for SRM Drives --  |g 11-6.  |t Determining the Rotor Position for Encoderless Operation --  |g 11-7.  |t Control in Motoring Mode --  |g 11-8.  |t Summary --  |t References --  |t Problems. 
907 |a .b5940016x  |b multi  |c -  |d 190327  |e 230213 
998 |a cue  |a cu  |b 190327  |c m  |d z   |e -  |f eng  |g nju  |h 0  |i 1 
948 |a MARCIVE Overnight, in 2023.02 
948 |a MARCIVE Comp, 2019.12 
995 |a Loaded with m2btab.ltiac in 2023.02 
995 |a Loaded with m2btab.ltiac in 2019.12 
995 |a Loaded with m2btab.ltiac in 2019.04 
989 |d cueme  |e  - -   |f  - -   |g j   |h 0  |i 0  |j 188  |k 190327  |l $0.00  |m    |n  - -   |o -  |p 0  |q 0  |t 0  |x 0  |w Prospector  |1 .i124966032  |u http://ezproxy.coloradomesa.edu/login?url=http://ebookcentral.proquest.com/lib/ca/detail.action?docID=1744264  |3 Prospector EBC  |z Click here for access