Physics of the interstellar and intergalactic medium

Main Author: Draine, Bruce T., 1947-
Format: Book
Language: English
Published: Princeton, N.J. : Princeton University Press, [2011]
Physical Description: xviii, 540 pages : illustrations (some color), maps ; 25 cm.
Series: Princeton series in astrophysics.
Subjects:
Item Description: Includes bibliographical references (pages [511]-528) and index.
Machine generated contents note: 1. Introduction -- 1.1. Organization of the ISM: Characteristic Phases -- 1.2. Elemental Composition -- 1.3. Energy Densities -- 2. Collisional Processes -- 2.1. Collisional Rate Coefficients -- 2.2. Inverse-Square Law Forces: Elastic Scattering -- 2.3. Electron-Ion Inelastic Scattering: Collision Strength ωul -- 2.4. Ion-Neutral Collision Rates -- 2.5. Electron-Neutral Collision Rates -- 2.6. Neutral-Neutral Collision Rates -- 3. Statistical Mechanics and Thermodynamic Equilibrium -- 3.1. Partition Functions -- 3.2. Detailed Balance: The Law of Mass Action -- 3.3. Ionization and Recombination -- 3.4. Saha Equation -- 3.5. Detailed Balance: Ratios of Rate Coefficients -- 3.6. Detailed Balance: Ratios of Cross Sections -- 3.7. Example: Three-Body Recombination -- 3.8. Departure Coefficients -- 4. Energy Levels of Atoms and Ions -- 4.1. Single-Electron Orbitals -- 4.2. Configurations -- 4.3. Spectroscopic Terms -- 4.4. Fine Structure: Spin-Orbit Interaction.
4.5. Designation of Energy Levels for Atoms and Ions: Spectroscopic Notation -- 4.6. Hyperfine Structure: Interaction with Nuclear Spin -- 4.7. Zeeman Effect -- 4.8. Further Reading -- 5. Energy Levels of Molecules -- 5.1. Diatomic Molecules -- 5.2. Energy Levels of Nonlinear Molecules -- 5.3. Zeeman Splitting -- 5.4. Further Reading -- 6. Spontaneous Emission, Stimulated Emission, and Absorption -- 6.1. Emission and Absorption of Photons -- 6.2. Absorption Cross Section -- 6.3. Oscillator Strength -- 6.4. Intrinsic Line Profile -- 6.5. Doppler Broadening: The Voigt Line Profile -- 6.6. Transition from Doppler Core to Damping Wings -- 6.7. Selection Rules for Radiative Transitions -- 7. Radiative Transfer -- 7.1. Physical Quantities -- 7.2. Equation of Radiative Transfer -- 7.3. Emission and Absorption Coefficients -- 7.4. Integration of the Equation of Radiative Transfer -- 7.5. Maser Lines -- 8. HI 21-cm Emission and Absorption -- 8.1. HI Emissivity and Absorption Coefficient -- 8.2. Optically Thin Cloud -- 8.3. Spin Temperature Determination Using Background Radio Sources.
9. Absorption Lines: The Curve of Growth -- 9.1. Absorption Lines -- 9.2. Optically Thin Absorption, &tau;0 < 1 -- 9.3. Flat Portion of the Curve of Growth, 10 < &tau;0 < &tau;damp -- 9.4. Damped Portion of the Curve of Growth, &tau;0 > &tau;damp -- 9.5. Approximation Formulae for W -- 9.6. Doublet Ratio -- 9.7. Lyman Series of Hydrogen: Ly &alpha;, Ly &beta;, Ly &gamma; -- 9.8. Lyman Limit -- 9.9. H2: Lyman and Werner Bands -- 9.10. "Metal" Lines -- 9.11. Abundances in HI Gas -- 10. Emission and Absorption by a Thermal Plasma -- 10.1. Free-Free Emission (Bremsstrahlung) -- 10.2. Gaunt Factor -- 10.3. Frequency-Averaged Gaunt Factor -- 10.4. Free-Free Absorption -- 10.5. Emission Measure -- 10.6. Free-Bound Transitions: Recombination Continuum -- 10.7. Radio Recombination Lines -- 11. Propagation of Radio Waves through the ISM -- 11.1. Dispersion Relation for Cold Plasmas -- 11.2. Dispersion -- 11.3. Faraday Rotation -- 11.4. Refraction -- 11.5. Scintillation -- 11.6. Interstellar Electron Density Power Spectrum -- 11.7. Extreme Scattering Events.
12. Interstellar Radiation Fields -- 12.1. Galactic Synchrotron Radiation -- 12.2. Cosmic Microwave Background Radiation -- 12.3. Free-Free Emission and Recombination Continuum -- 12.4. Infrared Emission from Dust -- 12.5. Starlight in an HI Region -- 12.6. X Rays from Hot Plasma -- 12.7. Radiation Field in a Photodissociation Region near a Hot Star -- 13. Ionization Processes -- 13.1. Photoionization -- 13.2. Auger Ionization and X-Ray Fluorescence -- 13.3. Secondary Ionizations -- 13.4. Collisional Ionization -- 13.5. Cosmic Ray Ionization -- 14. Recombination of Ions with Electrons -- 14.1. Radiative Recombination -- 14.2. Radiative Recombination of Hydrogen -- 14.3. Radiative Recombination: Helium -- 14.4. Radiative Recombination: Heavy Elements -- 14.5. Dielectronic Recombination -- 14.6. Dissociative Recombination -- 14.7. Charge Exchange -- 14.8. Ion Neutralization by Dust Grains -- 14.9. Ionization Balance in Collisionally Ionized Gas -- 15. Photoionized Gas -- 15.1. H II Regions as Stromgren Spheres -- 15.2. Time Scales.
15.3. Neutral Fraction within an H II Region -- 15.4. Dusty H II Regions with Radiation Pressure -- 15.5. Ionization of Helium and Other Elements -- 15.6. Planetary Nebulae -- 15.7. Escape of Lyman &alpha; -- 15.8. Ionization by Power-Law Spectra -- 16. Ionization in Predominantly Neutral Regions -- 16.1. H I Regions: Ionization of Metals -- 16.2. Cool H I Regions: Ionization of Hydrogen -- 16.3. Warm H I Regions -- 16.4. Diffuse Molecular Gas -- 16.5. Dense Molecular Gas: Dark Clouds -- 17. Collisional Excitation -- 17.1. Two-Level Atom -- 17.2. Critical Density nerit, u -- 17.3. Example: HI Spin Temperature -- 17.4. Example: CII Fine Structure Excitation -- 17.5. Three-Level Atom -- 17.6. Example: Fine Structure Excitation of CI and OI -- 17.7. Measurement of Density and Pressure Using CI -- 18. Nebular Diagnostics -- 18.1. Temperature Diagnostics: Collisionally Excited Optical/UV Lines -- 18.2. Density Diagnostics: Collisionally Excited Optical/UV Lines -- 18.3. Density Diagnostics: Fine-Structure Emission Lines -- 18.4. Other Diagnostic Methods.
18.5. Abundance Determination from Collisionally Excited Lines -- 18.6. Abundances from Optical Recombination Lines -- 18.7. Ionization/Excitation Diagnostics: The BPT Diagram -- 19. Radiative Trapping -- 19.1. Escape Probability Approximation -- 19.2. Homogeneous Static Spherical Cloud -- 19.3. Example: CO J =I-O -- 19.4. LVG Approximation: Hubble Flow -- 19.5. Escape Probability for Turbulent Clouds -- 19.6. CO I-O Emission as a Tracer of H2 Mass: CO "X-Factor" -- 20. Optical Pumping -- 20.1. UV Pumping by Continuum -- 20.2. Infrared Pumping: OH -- 20.3. UV Pumping by Line Coincidence: Bowen Fluorescence -- 21. Interstellar Dust: Observed Properties -- 21.1. Interstellar Extinction -- 21.2. Parametric Fits to the Extinction Curve -- 21.3. Polarization by Interstellar Dust -- 21.4. Scattering of Starlight by Interstellar Dust -- 21.5. Size Distribution of Interstellar Dust -- 21.6. Purcell Limit: Lower Limit on Dust Volume -- 21.7. Infrared Emission -- 21.8. Luminescence -- 22. Scattering and Absorption by Small Particles -- 22.1. Cross Sections and Efficiency Factors.
22.2. Dielectric Function and Refractive Index -- 22.3. Electric Dipole Limit: Size < &lambda; -- 22.4. Limiting Behavior at Long Wavelengths -- 22.5. Sizes Comparable to Wavelength: Mie Theory -- 22.6. Nonspherical Particles -- 22.7. Interstellar Grains -- 23. Composition of Interstellar Dust -- 23.1. Abundance Constraints -- 23.2. Presolar Grains in Meteorites -- 23.3. Observed Spectral Features of Dust -- 23.4. Silicates -- 23.5. Polycyclic Aromatic Hydrocarbons -- 23.6. Graphite -- 23.7. Diamond -- 23.8. Amorphous Carbons, Including Hydrogenated Amorphous Carbon -- 23.9. Fullerenes -- 23.10. Models for Interstellar Dust -- 24. Temperatures of Interstellar Grains -- 24.1. Heating and Cooling of "Classical" Dust Grains -- 24.2. Heating and Cooling of Ultrasmall Dust Grains: Temperature Spikes -- 24.3. Infrared Emission from Grains -- 24.4. Collisionally Heated Dust -- 25. Grain Physics: Charging and Sputtering -- 25.1. Collisional Charging -- 25.2. Photoelectric Emission -- 25.3. Grain Charging in the Diffuse ISM -- 25.4. Secondary Electron Emission.
25.5. Electron Field Emission -- 25.6. Ion Field Emission and Coulomb Explosions -- 25.7. Sputtering in Hot Gas -- 26. Grain Dynamics -- 26.1. Translational Motion -- 26.2. Rotational Motion -- 26.3. Alignment of Interstellar Dust -- 27. Heating and Cooling of H II Regions -- 27.1. Heating by Photoionization -- 27.2. Other Heating Processes -- 27.3. Cooling Processes -- 27.4. Thermal Equilibrium -- 27.5. Emission Spectrum of an H II Region -- 27.6. Observed Temperatures in H II Regions -- 28. Orion H II Region -- 28.1. Trapezium Stars -- 28.2. Distribution of Ionized Gas -- 28.3. Orion Bar -- 28.4. Gas Kinematics -- 28.5. PIGS, Proplyds, and Shadows -- 29. H I Clouds: Observations -- 29.1. 21-cm Line Observations -- 29.2. Distribution of the H I -- 29.3. Zeeman Effect -- 29.4. Optical and UV Absorption Line Studies -- 29.5. Infrared Emission -- 30. H I Clouds: Heating and Cooling -- 30.1. Heating: Starlight, Cosmic Rays, X Rays, and MHD Waves -- 30.2. Photoelectric Heating by Dust -- 30.3. Cooling: [C II] 158 &mu;m, [OI] 63 &mu;m, and Other Lines.
30.4. Two "Phases" for HI in the ISM -- 30.5. Emission Spectrum of an HI Cloud -- 31. Molecular Hydrogen -- 31.1. Gas-Phase Formation of H2 -- 31.2. Grain Catalysis of H2 -- 31.3. Photodissociation of H2 -- 31.4. Self-Shielding -- 31.5. Excitation of Vibration and Rotation by UV Pumping -- 31.6. Rotational Level Populations -- 31.7. Structure of a Photodissociation Region -- 31.8. Dense PDRs -- 32. Molecular Clouds: Observations -- 32.1. Taxonomy and Astronomy -- 32.2. Star Counts -- 32.3. Molecular Radio Lines -- 32.4. FIR Emission from Dust -- 32.5. &gamma; rays -- 32.6. Compact, Ultracompact, and Hypercompact HII Regions -- 32.7. IR Point Sources -- 32.8. Masers -- 32.9. Size-Linewidth Relation in Molecular Clouds.
32.10. Magnetic Fields in Molecular Clouds -- 32.11. Energy Dissipation in Molecular Clouds -- 33. Molecular Clouds: Chemistry and Ionization -- 33.1. Photoionization and Photodissociation of Molecules -- 33.2. Ion-Molecule Chemistry in Cold Gas -- 33.3. CH+ Problem -- 34. Physical Processes in Hot Gas -- 34.1. Radiative Cooling -- 34.2. Radiative Cooling Time -- 34.3. Thermal Conduction -- 34.4. Cloud Evaporation in Hot Gas -- 34.5. Conduction Fronts -- 35. Fluid Dynamics -- 35.1. Mass Conservation -- 35.2. Conservation of Momentum: MHD Navier-Stokes Equation -- 35.3. Heating and Cooling -- 35.4. Electrodynamics in a Conducting Fluid: Flux-Freezing -- 35.5. Virial Theorem -- 36. Shock Waves -- 36.1. Sources of Interstellar Shocks -- 36.2. Jump Conditions: Rankine-Hugoniot Relations -- 36.3. Cooling Time and Cooling Length -- 36.4. Collisionless Shocks.
36.5. Electron Temperature -- 36.6. Two-Fluid MHD Shocks in Low Fractional Ionization Gas -- 37. Ionization/Dissociation Fronts -- 37.1. Ionization Fronts: R-Type and D-Type -- 37.2. Expansion of an HII Region in a Uniform Medium -- 37.3. Photodissociation Fronts -- 38. Stellar Winds -- 38.1. Winds from Hot Stars: Stellar Wind Bubbles -- 38.2. Winds from Cool Stars -- 38.3. Stellar Wind Bow-Shock -- 39. Effects of Supernovae on the ISM -- 39.1. Evolution of a Supernova Remnant in a Uniform ISM -- 39.2. Overlapping of SNRs -- 39.3. Supernova Remnants in an Inhomogeneous Medium -- 39.4. Three-Phase Model of the ISM -- 40. Cosmic Rays and Gamma Rays -- 40.1. Cosmic Ray Energy Spectrum and Composition -- 40.2. Theory of Diffusive Shock Acceleration -- 40.3. Injection Problem -- 40.4. Upper Limits on Cosmic Ray Energy -- 40.5. Cosmic Ray Propagation -- 40.6. Synchrotron Emission and Supernova Remnants -- 40.7. Gamma Ray Emission from Interstellar Clouds.
40.8. 26 Al in the ISM -- 40.9. Positrons and Positronium in the ISM -- 41. Gravitational Collapse and Star Formation: Theory -- 41.1. Gravitational Instability: Jeans Instability -- 41.2. Parker Instability -- 41.3. Insights from the Virial Theorem -- 41.4. Magnetic Flux Problem: Ambipolar Diffusion -- 41.5. Angular Momentum Problem -- 41.6. Accretion Disks -- 41.7. Radiation Pressure -- 42. Star Formation: Observations -- 42.1. Collapse of Cores to form Stars -- 42.2. Class 0, I, II, and III Protostars -- 42.3. Initial Mass Function -- 42.4. Star Formation Rates -- 42.5. Schrnidt-Kennicutt Law -- Appendices -- A. List of Symbols -- B. Physical Constants -- C. Summary of Radiative Processes -- D. Ionization Potentials (eV) -- E. Energy-Level Diagrams -- F. Collisional Rate Coefficients -- G. Semiclassical Atom -- H. Debye Length for a Plasma -- I. Heuristic Model for Ion-Electron Inelastic Scattering -- J. Virial Theorem.
Physical Description: xviii, 540 pages : illustrations (some color), maps ; 25 cm.
Bibliography: Includes bibliographical references (pages [511]-528) and index.
ISBN: 9780691122137
069112213X
9780691122144
0691122148