Loading…

Biomedical applications of inorganic photochemistry

Saved in:
Bibliographic Details
Corporate Author: ScienceDirect (Online service)
Other Authors: Ford, Peter C., Eldik, Rudi van
Format: eBook
Language:English
Published: [S.l.] : Academic Press, 2022.
[Place of publication not identified] : 2022.
Series:Advances in inorganic chemistry ; v. 80.
Physical Description:
1 online resource.
Subjects:
Online Access:Elsevier - Click here for access
Contents:
  • Intro
  • Biomedical Applications of Inorganic Photochemistry
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Leveraging the photophysical properties of rhenium(I) tricarbonyl complexes for biomedical applications
  • 1. Introduction
  • 2. Properties and applications of Re(CO)3 complexes
  • 3. Re(CO)3 complexes as photoluminescent imaging agents
  • 4. Simple diimine Re(CO)3 complexes exhibit anticancer activity
  • 5. Pyridylimine Re(CO)3 complexes
  • 6. Isonitrile-containing Re(CO)3 complexes
  • 7. Photoactivation of Re(CO)3 anticancer agents.
  • 8. Conclusions and future outlook
  • Acknowledgments
  • References
  • Chapter Two: Strategic design of photofunctional transition metal complexes for cancer diagnosis and therapy
  • 1. Introduction
  • 2. Transition metal complexes for targeted cancer diagnosis and therapy
  • 2.1. Glucose transporters
  • 2.2. Biotin receptors
  • 2.3. Integrins
  • 2.4. G-Protein-coupled receptors
  • 2.5. Epidermal growth factor receptor
  • 2.6. Carbonic anhydrase
  • 2.7. Cyclooxygenase
  • 2.8. Sialylated glycoproteins and glycolipids
  • 3. Activatable transition metal complexes for cancer diagnosis and therapy.
  • 3.1. Hypoxia
  • 3.2. pH
  • 3.3. Polarity
  • 3.4. Viscosity
  • 3.5. Redox status
  • 3.6. Enzymes
  • 3.7. Mismatched DNA molecules
  • 3.8. Bioorthogonal chemical reporters
  • 4. Conclusions and future perspective
  • Acknowledgments
  • References
  • Chapter Three: Advances in the design of photoactivated platinum anticancer complexes
  • 1. Introduction
  • 2. Discovery of photoactive Pt(IV) anticancer complexes
  • 3. Mechanism of action
  • 3.1. Radical and ROS generation
  • 3.2. DNA as a target
  • 3.3. Peptide and protein targets
  • 3.4. Induction of immunogenic cell death.
  • 4. Axial derivatives of Pt(IV) complexes
  • 4.1. Targeting vectors
  • 4.2. Multi-action derivatives
  • 5. Pt(IV) azide-acetylene derivatives via ̀̀click ́́reactions
  • 6. Nanocarriers
  • 6.1. Proteins
  • 6.2. Polysaccharides
  • 6.3. Hydrogels
  • 6.4. Block copolymers
  • 6.5. Polymetallodrugs
  • 6.6. Carbon dots
  • 6.7. Up-converting nanoparticles (UCNPs)
  • 6.8. Summary and prospects
  • Acknowledgments
  • References
  • Chapter Four: Adventures in the photo-uncaging of small molecule bioregulators
  • 1. Introduction
  • 2. PhotoNORMs and PhotoCORMs
  • 2.1. Uncaging nitric oxide.
  • 2.2. Uncaging carbon monoxide
  • 3. Enhancing photoreaction SMB release rates with antennas
  • 3.1. Organic chromophore antennas
  • 3.2. Semiconductor quantum dot antennas
  • 4. Moving toward the phototherapeutic window
  • 4.1. Single photon excitation strategies
  • 4.2. Simultaneous two photon excitation
  • 4.3. Upconverting nanoparticles
  • 4.4. Nano-carriers
  • 5. Biological targeting
  • 5.1. Liposomes
  • 5.2. Hollow gold nanoshells
  • 5.3. Macrophage Trojan Horses
  • 6. Summary
  • Acknowledgments
  • References.