Dynamics of parallel robots

This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the princi...

Full description

Main Author: Staicu, Ștefan,
Other Authors: SpringerLink (Online service)
Format: eBook
Language: English
Published: Cham : Springer, [2018]
Physical Description: 1 online resource.
Series: Parallel robots.
Subjects:
LEADER 07244cam a2200745Ii 4500
001 1052766524
003 OCoLC
005 20210625184822.3
006 m o d
007 cr cnu---unuuu
008 180918s2018 sz o 000 0 eng d
015 |a GBB8H8611  |2 bnb 
016 7 |a 019059784  |2 Uk 
019 |a 1053864229  |a 1054106800  |a 1054830088  |a 1055258759 
020 |a 9783319995229  |q (electronic bk.) 
020 |a 3319995227  |q (electronic bk.) 
020 |z 9783319995212  |q (hardcover) 
020 |z 3319995219  |q (hardcover) 
035 |a (OCoLC)1052766524  |z (OCoLC)1053864229  |z (OCoLC)1054106800  |z (OCoLC)1054830088  |z (OCoLC)1055258759 
037 |a com.springer.onix.9783319995229  |b Springer Nature 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d YDX  |d NLE  |d OCLCF  |d BNG  |d UKMGB  |d GW5XE  |d UKAHL  |d OCLCQ  |d ESU 
049 |a COM6 
050 4 |a TJ211.4152  |b .S73 2019eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 |a Staicu, Ștefan,  |e author. 
245 1 0 |a Dynamics of parallel robots /  |c Stefan Staicu. 
264 1 |a Cham :  |b Springer,  |c [2018] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Parallel robots. 
588 0 |a Online record; title from digital title page (viewed on October 25, 2018). 
505 0 |a Intro; Preface; Contents; List of Figures; 1 Introduction; 1.1 Robotics Systems; 1.2 Historical Development; 1.3 Mechanics of Robots; References; 2 Matrix Kinematics of the Rigid Body; 2.1 Position and Orientation of the Rigid Body; 2.2 Velocity Field; 2.3 Acceleration Field; 2.4 Twist of Velocity Field of a Rigid Body; 2.5 Types of Rigid Body Motions; 2.5.1 Translation; 2.5.2 Rotation About a Fixed Axis; 2.5.3 Cylindrical Motion of a Rigid Body; 2.5.4 Spherical Motion of a Rigid Body; 2.5.5 Planar Motion of a Rigid Body; References; 3 Matrix Kinematics of Composed Motion. 
505 8 |a 3.1 Kinematics of Composed Motion of a Point3.1.1 Absolute Velocity; 3.1.2 Absolute Acceleration; 3.2 Kinematics of Composed Motion of a Rigid Body; 3.2.1 Velocity Field; 3.2.2 Acceleration Field; 3.3 Applications to Kinematics Analysis of Mechanisms; 3.3.1 Universal Hooke Joint; 3.3.2 Slider-Crank Mechanism; 3.3.3 Four-Bar Mechanism; 3.3.4 Quick-Return Mechanism; References; 4 Kinetics of the Rigid Body; 4.1 Centre of Mass and Tensor of Static Moments of a Rigid Body; 4.2 Moments of Inertia of a Rigid Body; 4.2.1 Tensor of Inertia; 4.2.2 Generalized Huygens-Steiner Theorem. 
505 8 |a 4.2.3 Principal Axes and Principal Moments of Inertia4.2.4 Inertia Moments of Planar Systems; 4.2.5 General Matrix of Inertia of a Rigid Body; 4.3 Kinetic Impulse of a System of Particles; 4.4 Kinetic Moment of a Rigid Body; 4.4.1 Translation; 4.4.2 Rotation About a Fixed Axis; 4.4.3 Spherical Motion of a Rigid Body; 4.4.4 General Motion of a Rigid Body; 4.4.5 Planar Motion of a Rigid Body; 4.4.6 Kinetic Wrench of the Rigid Body; 4.5 Kinetic Energy of a Rigid Body; 4.5.1 Translation; 4.5.2 Rotation About a Fixed Axis; 4.5.3 Spherical Motion of a Rigid Body. 
505 8 |a 4.5.4 General Motion of a Rigid Body4.5.5 Planar Motion of the Rigid Body; 4.5.6 General Expression of Kinetic Energy of a Rigid Body; 4.6 Power and Work of the Forces Acting on a System of Particles; 4.7 Power and Work of the Forces Acting on a Rigid Body; References; 5 Dynamics of the Rigid Body; 5.1 Fundamental System of Differential Equations of Motion for a System of Particles; 5.2 Theorem of Kinetic Impulse; 5.3 Theorem of Kinetic Moment; 5.4 Theorem of Kinetic Moment with Respect to a Translating Frame; 5.5 Theorem of Kinetic Energy; 5.6 Conservation of Mechanical Energy. 
505 8 |a 5.7 Theorem of Kinetic Energy with Respect to a Translating Frame5.8 Equations of Motion in Dynamics of the Rigid Body; 5.8.1 Planar Motion of a Rigid Body; 5.8.2 Spherical Motion of a Rigid Body; 5.8.3 Spherical Motion of a Rigid Body Under Its Own Weight; 5.8.4 Gyroscope; 5.8.5 Gyroscopic Moment; References; 6 Analytical Mechanics; 6.1 Principle of Virtual Work; 6.2 D'Alembert's Principle; 6.2.1 Wrench of Inertia Forces; 6.2.2 Inertia Forces Applied to a Rigid Body; 6.3 Lagrange Equations; 6.3.1 Conservative System of Forces; 6.3.2 Non-holonomic Mechanical Systems. 
520 |a This book establishes recursive relations concerning kinematics and dynamics of constrained robotic systems. It uses matrix modeling to determine the connectivity conditions on the relative velocities and accelerations in order to compare two efficient energetic ways in dynamics modeling: the principle of virtual work, and the formalism of Lagrange's equations. First, a brief fundamental theory is presented on matrix mechanics of the rigid body, which is then developed in the following five chapters treating matrix kinematics of the rigid body, matrix kinematics of the composed motion, kinetics of the rigid body, dynamics of the rigid body, and analytical mechanics. By using a set of successive mobile frames, the geometrical properties and the kinematics of the vector system of velocities and accelerations for each element of the robot are analysed. The dynamics problem is solved in two energetic ways: using an approach based on the principle of virtual work and applying the formalism of Lagrange's equations of the second kind. These are shown to be useful for real-time control of the robot's evolution. Then the recursive matrix method is applied to the kinematics and dynamics analysis of five distinct case studies: planar parallel manipulators, spatial parallel robots, planetary gear trains, mobile wheeled robots and, finally, two-module hybrid parallel robots. 
650 0 |a Parallel robots. 
650 7 |a Engines & power transmission.  |2 bicssc. 
650 7 |a Artificial intelligence.  |2 bicssc. 
650 7 |a Automatic control engineering.  |2 bicssc. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh. 
650 7 |a Parallel robots.  |2 fast. 
655 4 |a Electronic books. 
710 2 |a SpringerLink (Online service) 
776 0 8 |i Print version:  |a Staicu, Stefan.  |t Dynamics of parallel robots.  |d Cham : Springer, [2018]  |z 3319995219  |z 9783319995212  |w (OCoLC)1045453730. 
830 0 |a Parallel robots. 
907 |a .b59483763  |b multi  |c -  |d 190426  |e 230213 
998 |a (2)cue  |a cu  |b 210628  |c m  |d z   |e -  |f eng  |g sz   |h 0  |i 2 
948 |a MARCIVE Overnight, in 2023.02 
948 |a MARCIVE Over, 07/2021 
948 |a MARCIVE Comp, 2019.12 
948 |a MARCIVE Overnight 05/2019 
994 |a 92  |b COM 
995 |a Loaded with m2btab.ltiac in 2023.02 
995 |a Loaded with m2btab.ltiac in 2021.07 
995 |a Loaded with m2btab.elec in 2021.06 
995 |a Loaded with m2btab.ltiac in 2019.12 
995 |a Loaded with m2btab.ltiac in 2019.05 
995 0 0 |a OCLC offline update by CMU and loaded with m2btab.elec in 2019.04 
995 |a Loaded with m2btab.auth in 2021.07 
989 |d cueme  |e  - -   |f  - -   |g -   |h 0  |i 0  |j 200  |k 210628  |l $0.00  |m    |n  - -   |o -  |p 0  |q 0  |t 0  |x 0  |w SpringerLink  |1 .i139065854  |u http://ezproxy.coloradomesa.edu/login?url=https://link.springer.com/10.1007/978-3-319-99522-9  |3 SpringerLink  |z Click here for access