Turbulence in porous media modeling and applications /

'Turbulence in Porous Media' introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media a...

Full description

Main Author: Lemos, Marcelo J. S. de.
Other Authors: ScienceDirect (Online service)
Format: eBook
Language: English
Published: Chennai ; Oxford : Elsevier, 2012.
Physical Description: 1 online resource : illustrations.
Edition: 2nd ed.
Series: Elsevier insights.
Subjects:
Table of Contents:
  • Machine-generated contents note:
  • 1.
  • Introduction
  • 1.1.
  • Overview of Porous Media Modelling
  • 1.1.1.
  • General Remarks
  • 1.1.2.
  • Fundamental Conservation Equations
  • 1.1.3.
  • Basic Models for Flow in Porous Media
  • 1.1.4.
  • Extended Models for Flow in Porous Media
  • 1.1.5.
  • Models for Petroleum Reservoir Simulation
  • 1.2.
  • Overview of Turbulence Modelling
  • 1.2.1.
  • General Remarks
  • 1.2.2.
  • Turbulence Phenomena
  • 1.2.3.
  • Traditional Classification of Turbulence Models
  • 1.3.
  • Turbulent Flow in Permeable Structures
  • 2.
  • Governing Equations
  • 2.1.
  • Local Instantaneous Governing Equations
  • 2.2.
  • Averaging Operators
  • 2.2.1.
  • Local Volume Averaging
  • 2.2.2.
  • Instantaneous Time Averaging
  • 2.2.3.
  • Commutative Properties
  • 2.3.
  • Time-Averaged Transport Equations
  • 2.4.
  • Volume-Averaged Transport Equations
  • 3.
  • Double-Decomposition Concept
  • 3.1.
  • Basic Relationships
  • 3.2.
  • Classification of Macroscopic Turbulence Models
  • 4.
  • Turbulent Momentum Transport
  • 4.1.
  • Momentum Equation
  • 4.1.1.
  • Mean Flow
  • 4.1.2.
  • Fluctuating Velocity
  • 4.2.
  • Turbulent Kinetic Energy
  • 4.2.1.
  • Equation for km=<u'>i·<u'>i/2
  • 4.2.2.
  • Equation for <k>i=<u'>i·<u'>i/2
  • 4.2.3.
  • Comparison of Macroscopic Transport Equations
  • 4.3.
  • Macroscopic Turbulence Model
  • 4.3.1.
  • Numerical Determination of Constant ck
  • 4.3.2.
  • Microscopic Results and Integrated Values
  • 5.
  • Turbulent Heat Transport
  • 5.1.
  • Macroscopic Energy Equation
  • 5.1.1.
  • Time-Averaging Followed by Volume-Averaging
  • 5.1.2.
  • Volume-Averaging Followed by Time-Averaging
  • 5.1.3.
  • Turbulent Thermal Dispersion
  • 5.2.
  • Thermal Equilibrium Model
  • 5.2.1.
  • Effective Conductivity Tensor
  • 5.2.2.
  • Determination of the Dispersion Tensor Kdisp
  • 5.2.3.
  • Imposed Boundary Temperature Difference
  • 5.2.4.
  • Imposed Boundary Heat Flux
  • 5.2.5.
  • Numerical Results
  • 5.3.
  • Thermal Non-equilibrium Model
  • 5.3.1.
  • Laminar Flow Through Packed Beds
  • 5.3.2.
  • Turbulent Flow Through Packed Beds
  • 5.3.3.
  • Modelled Macroscopic Energy Equations
  • 5.4.
  • Macroscopic Buoyancy Effects
  • 5.4.1.
  • Mean Flow
  • 5.4.2.
  • Turbulent Field
  • 6.
  • Turbulent Mass Transport
  • 6.1.
  • Mean Field
  • 6.2.
  • Turbulent Mass Dispersion
  • 6.3.
  • Macroscopic Transport Models
  • 6.4.
  • Mass Dispersion Coefficients
  • 6.4.1.
  • Imposed Mass Fraction Flux at Boundaries
  • 6.4.2.
  • Numerical Results
  • 7.
  • Turbulent Double Diffusion
  • 7.1.
  • Introduction
  • 7.1.1.
  • Macroscopic Equations for Buoyancy-Free Flows
  • 7.2.
  • Macroscopic Double-Diffusion Effects
  • 7.2.1.
  • Mean Flow
  • 7.2.2.
  • Turbulent Field
  • 7.3.
  • Hydrodynamic Stability
  • 8.
  • Turbulent Combustion
  • 8.1.
  • Porous Combustors
  • 8.2.
  • Macroscopic Flow and Heat Transfer
  • 8.2.1.
  • Macroscopic Continuity Equation
  • 8.2.2.
  • Macroscopic Momentum Equation
  • 8.2.3.
  • Macroscopic Energy Models
  • 8.3.
  • Macroscopic Combustion Modelling
  • 8.3.1.
  • Mass Transport for Fuel
  • 8.3.2.
  • Simple Chemistry
  • 8.3.3.
  • Double Decomposition of Variables
  • 8.3.4.
  • Macroscopic Fuel Consumption Rates
  • 9.
  • Moving Porous Media
  • 9.1.
  • Moving Systems
  • 9.1.1.
  • Macroscopic Model for the Moving Bed
  • 9.2.
  • Basic Definitions
  • 9.3.
  • Macroscopic Equation
  • 9.3.1.
  • Fixed Bed
  • 9.3.2.
  • Moving Bed
  • 10.
  • Numerical Modelling and Algorithms
  • 10.1.
  • Introduction
  • 10.2.
  • Need for Iterative Methods
  • 10.3.
  • Incompressible Versus Compressible Solution Strategies
  • 10.4.
  • Geometry Modelling
  • 10.4.1.
  • Computational Grids
  • 10.4.2.
  • Structured Grids
  • 10.4.3.
  • Unstructured Grids
  • 10.4.4.
  • Application to Reservoir Simulation
  • 10.5.
  • Treatment of the Convection Term
  • 10.5.1.
  • Nature of the Numerical Solution
  • 10.5.2.
  • Interpolating Functions
  • 10.6.
  • Discretized Equations for Transient Three-Dimensional Flows
  • 10.7.
  • Systems of Algebraic Equations
  • 10.7.1.
  • Interlinkage and Coupling Among Variables
  • 10.7.2.
  • Segregated Methods
  • 10.7.3.
  • Coupled Methods
  • 10.8.
  • Treatment of the u,w-T Coupling
  • 10.8.1.
  • Introduction
  • 10.8.2.
  • Analysis and Numerics
  • 10.8.3.
  • Results and Discussion
  • 10.9.
  • Treatment of the u,w-V Coupling
  • 10.9.1.
  • Introduction
  • 10.9.2.
  • Geometry and Flow Equations
  • 10.9.3.
  • Discretized Equations and the Numerical Method
  • 10.9.4.
  • Some Numerical Results
  • 10.10.
  • Treatment of the u, w-V-T Coupling
  • 10.10.1.
  • Introduction
  • 10.10.2.
  • Governing Equations and the Numerical Method
  • 10.10.3.
  • Some Numerical Results
  • 11.
  • Applications in Hybrid Media
  • 11.1.
  • Forced Flows in Composite Channels
  • 11.1.1.
  • Numerical Implementation of Jump Conditions for Laminar Flow
  • 11.1.2.
  • Jump Condition for Mean Turbulent Flows
  • 11.1.3.
  • Jump Condition for Turbulence Kinetic Energy
  • 11.2.
  • Channels with Porous and Solid Baffles
  • 11.2.1.
  • General Remarks
  • 11.2.2.
  • Friction Factor
  • 11.2.3.
  • Nusselt Number
  • 11.2.4.
  • Developing Flow
  • 11.2.5.
  • Fully-Developed Flow
  • 11.2.6.
  • Section Summary
  • 11.3.
  • Turbulent Impinging Jet onto a Porous Layer
  • 11.3.1.
  • Numerical Details
  • 11.3.2.
  • Clear Media
  • 11.3.3.
  • Porous Media
  • 11.4.
  • Buoyant Flows
  • 11.4.1.
  • Cavities Partially-Filled with Vertical Layers of Porous Material
  • 11.4.2.
  • Cavities Partially-Filled with Horizontal Layers of Porous Material
  • 11.4.3.
  • Fluid-Porous-Solid Systems
  • 11.4.4.
  • Cavities Totally-Filled with a Porous Material
  • 11.4.5.
  • Heterogeneous Versus Homogenous Systems
  • 11.5.
  • Flow and Heat Transfer in a Back-Step
  • 11.5.1.
  • Macroscopic Mean Equations
  • 11.5.2.
  • Macroscopic Non-linear Model
  • 11.5.3.
  • Results and Discussion
  • 11.5.4.
  • Section Summary
  • 11.6.
  • Porous Burners
  • 11.6.1.
  • Cases Investigated
  • 11.6.2.
  • Two-Dimensional Flow: The LTE Model
  • 11.6.3.
  • One-Dimensional Flow: The LTNE Model
  • 11.6.4.
  • Section Summary
  • 11.7.
  • Moving Beds
  • 11.7.1.
  • Introduction
  • 11.7.2.
  • Laminar Parallel Flows
  • 11.7.3.
  • Laminar Counterflows
  • 11.7.4.
  • Turbulent Kinetic Energy.