Adhesion of Cells, Viruses and Proteins

"Adhesion of Cells, Viruses and Nanoparticles" describes the adhesion of cells, viruses and nanoparticles starting from the basic principles of adhesion science, familiar to postgraduates, and leading on to recent research results. The underlying theory is that of van der Waals forces acti...

Full description

Main Author: Kendall, Kevin, 1943-
Other Authors: Kendall, Michaela., Rehfeldt, Florian., SpringerLink (Online service)
Format: eBook
Language: English
Published: Dordrecht : Springer, 2011.
Dordrecht : 2011.
Physical Description: 1 online resource (xv, 282 pages) : color illustrations.
Subjects:
LEADER 10017cam a2200781 a 4500
001 695388630
003 OCoLC
005 20240223121953.0
006 m o d
007 cr cn|||||||||
008 110106s2011 gw a ob 001 0 eng d
019 |a 1044263671  |a 1056390419  |a 1060873158  |a 1065019021  |a 1074308187  |a 1077849931  |a 1087334004 
020 |a 9789048125852  |q (electronic bk.) 
020 |a 9048125855  |q (electronic bk.) 
035 |a (OCoLC)695388630  |z (OCoLC)1044263671  |z (OCoLC)1056390419  |z (OCoLC)1060873158  |z (OCoLC)1065019021  |z (OCoLC)1074308187  |z (OCoLC)1077849931  |z (OCoLC)1087334004 
037 |a 978-90-481-2584-5  |b Springer  |n http://www.springerlink.com 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d YDXCP  |d EBLCP  |d OCLCQ  |d SNK  |d OHI  |d OCLCF  |d BEDGE  |d OCLCQ  |d A7U  |d DEBSZ  |d OCLCQ  |d UAB  |d ESU  |d OCLCQ  |d IOG  |d CEF  |d U3W  |d YOU  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AJS  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a COM6 
050 4 |a QH623  |b .K46 2011 
072 7 |a QH  |2 lcco 
082 0 4 |a 541.33  |2 22 
100 1 |a Kendall, Kevin,  |d 1943-  |1 https://id.oclc.org/worldcat/entity/E39PCjFDWvHWprR3J44B7h6KYd. 
245 1 0 |a Adhesion of Cells, Viruses and Proteins /  |c Kevin Kendall, Michaela Kendall, Florian Rehfeldt. 
260 |a Dordrecht :  |b Springer,  |c 2011. 
264 1 |a Dordrecht :  |b Springer,  |c 2011. 
300 |a 1 online resource (xv, 282 pages) :  |b color illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 0 |g Note continued:  |g 3.12.  |t Conclusions --  |t References --  |g pt. II  |t Mechanisms --  |g 4.  |t Macroscopic View of Adhesion for Nanoparticles, Viruses and Cells --  |g 4.1.  |t Fundamental Definitions --  |g 4.2.  |t Theory Using Work of Adhesion W --  |g 4.3.  |t Different Geometries; Wedging, Peeling and Spheres --  |g 4.4.  |t Effect of Elasticity; Scraping and Stretching --  |g 4.5.  |t More Complex Geometries; Button Test, Tension and Probes --  |g 4.6.  |t Measured Values of Adhesion Energy --  |g 4.7.  |t Reducing W by Adding Surface Active Agents --  |g 4.8.  |t Measurements of Cell Adhesion by Probe Methods --  |g 4.9.  |t Crack Stopping by Geometry Change --  |g 4.10.  |t Elastic Changes Affecting Adhesion: Shrinkage and Pre-stressing --  |g 4.11.  |t Stringing and Crazing --  |g 4.12.  |t Biofilm Adhesion --  |g 4.13.  |t Conclusions --  |t References --  |g 5.  |t Statistics of Adhesion at Nanoscale --  |g 5.1.  |t Flickering Black Spot; Large Contacts --  |g 5.2.  |t Flickering Black Spot; Small Contacts --  |g 5.3.  |t Dwell-Time Effect --  |g 5.4.  |t Reaching Equilibrium --  |g 5.5.  |t Adhesion with Water Present at Surfaces --  |g 5.6.  |t Adhesive Drag --  |g 5.7.  |t Adhesive Hysteresis --  |g 5.8.  |t Peel Stopping by Viscoelastic Loss --  |g 5.9.  |t Rolling Resistance as a Measure of Adhesion Hysteresis, Drag and Dwell-Time Effect --  |g 5.10.  |t Aggregation Statistics of Nano-Particles --  |g 5.11.  |t Conclusions --  |t References --  |g 6.  |t Subdivision and Separation of Contact Spots --  |g 6.1.  |t Increase in Adhesion Force for Subdivided Contact Spots --  |g 6.2.  |t Force Versus Energy --  |g 6.3.  |t Peeling Off the Gecko Foot --  |g 6.4.  |t Measurement of Single Seta Adhesion Force --  |g 6.5.  |t Possibility of Adhesive Dislocations --  |g 6.6.  |t Subdividing Contact Spots Increases Adhesion --  |g 6.7.  |t Gecko Tape --  |g 6.8.  |t Micro-Patterning --  |g 6.9.  |t Stiffness and Adhesion of Multiple Contacts --  |g 6.10.  |t Conclusions --  |t References --  |g 7.  |t Measurement Methods --  |g 7.1.  |t Light Microscopy --  |g 7.2.  |t Reflectance Interference Contrast Microscopy. 
505 0 0 |g Note continued:  |g 7.3.  |t Fluorescence Microscopy, Interference Contrast, Total Internal Reflection --  |g 7.4.  |t Atomic Force Microscopy --  |g 7.5.  |t Optical Tweezers --  |g 7.6.  |t Micropipette Aspiration --  |g 7.7.  |t Spinning Disc --  |g 7.8.  |t Cell Adhesion by Flow Methods --  |g 7.9.  |t Cell Counting Methods --  |g 7.10.  |t Adhesion by Counting Doublets --  |g 7.11.  |t Experimental Results --  |g 7.12.  |t Conclusions --  |t References --  |g pt. III  |t Detailed Research --  |g 8.  |t Adhesion of Nanoparticles --  |g 8.1.  |t Nanoparticles in Space --  |g 8.2.  |t Nanoparticles in the Atmosphere --  |g 8.3.  |t Characterisation of Atmospheric Nanoparticles and Their Health Effects --  |g 8.4.  |t Nanoparticles in Water --  |g 8.5.  |t Synthetic Nanoparticle Polymers; Latex Coalescence --  |g 8.6.  |t Synthetic Inorganic Nanoparticles --  |g 8.7.  |t Gas-Phase Nanoparticle Production --  |g 8.8.  |t Liquid Phase Preparation of Nanoparticles --  |g 8.9.  |t New Method for Nanoparticle Tracking --  |g 8.10.  |t Adhesion from Doublet Numbers --  |g 8.11.  |t Detection of Adhesion with FemtoNewton Resolution --  |g 8.12.  |t Conclusions --  |t References --  |g 9.  |t Adhesion of Viruses --  |g 9.1.  |t Variety of Virus Particles --  |g 9.2.  |t Observing the Adhesion of Viruses by TEM & X-Ray --  |g 9.3.  |t TEM Investigations of Adhesion Mechanism --  |g 9.4.  |t Atomic Force Microscope (AFM) Studies --  |g 9.5.  |t Sensor Methods for Detecting Adhesion --  |g 9.6.  |t Single Particle Fluorescence --  |g 9.7.  |t Self Adhesion and Aggregation by Light Scattering --  |g 9.8.  |t Virus Calibration Using Standard Polystyrene Latex --  |g 9.9.  |t Self-Adhesion of Viruses --  |g 9.10.  |t Drug Treatments Associated with Adhesion --  |g 9.11.  |t Preventing Virus Detachment --  |g 9.12.  |t Conclusions --  |t References --  |g 10.  |t Adhesion of Cells --  |g 10.1.  |t Cell Adhesion is a Vital Phenomenon --  |g 10.2.  |t Emergence of Cell Culture as Investigative Tool --  |g 10.3.  |t Factors in Cell Adhesion -- More than Lock and Key --  |g 10.4.  |t Substrate Elasticity and Cell Health --  |g 10.5.  |t Model Systems for Cell Adhesion Measurements. 
505 0 0 |g Note continued:  |g 10.6.  |t Substrate Geometry Effects on Cell Health --  |g 10.7.  |t Elasticity Drives Stem Cell Differentiation --  |g 10.8.  |t Physical Models for Cell-Substrate Interactions --  |g 10.9.  |t Conclusions --  |t References --  |g 11.  |t Nanoparticles Adhering to Cells; Toxicity Effects --  |g 11.1.  |t Pathways into the Body --  |g 11.2.  |t Variety of Nanoparticles --  |g 11.3.  |t Measures of Nanoparticle Toxicity --  |g 11.4.  |t Nanoparticle Surface Interactions with Extracellular Molecules --  |g 11.5.  |t Nanoparticles Approaching the Cell Surface --  |g 11.6.  |t Nanoparticles Entering Cells --  |g 11.7.  |t Toxicity Mechanics --  |g 11.8.  |t Translocation of Nanoparticles Within Organisms --  |g 11.9.  |t Nanoparticle Toxicity: Lessons from the Lung --  |g 11.10.  |t Conclusions --  |t References --  |g 12.  |t Cell, Virus and Nanoparticle Adhesion: Significance and Future --  |g 12.1.  |t Key Questions of Adhesion --  |g 12.2.  |t Adhesion Fundamentals --  |g 12.3.  |t Adhesion at the Molecular Level --  |g 12.4.  |t Subdivision of Contact Spots --  |g 12.5.  |t Connexion Between Nanoparticles, Viruses and Cells --  |g 12.6.  |t Future Problems and Trends --  |g 12.7.  |t Vision of the Future --  |t References. 
520 |a "Adhesion of Cells, Viruses and Nanoparticles" describes the adhesion of cells, viruses and nanoparticles starting from the basic principles of adhesion science, familiar to postgraduates, and leading on to recent research results. The underlying theory is that of van der Waals forces acting between cells and substrates, embodied in the molecules lying at the surfaces, together with the geometry and elasticity of the materials involved. The first part describes the fundamental background to adhesion principles, including the phenomenology, the important equations and the modeling ideas. Then the mechanisms of adhesion are explored in the second part, including the elastic deformations of spheres and the importance of the energy of adhesion as measured in various tests. It is demonstrated that adhesion of cells is statistical and depends on Brownian movement and on the complex multiple contacts that can form as cells move around. Then, detailed chapters on cell adhesion, contact of viruses and aggregation of nanoparticles follow in Part 3. Finally, the last chapter looks to the future understanding of cell adhesion and points out some interesting directions of research, development and treatment of diseases related to these phenomena. This book is an ideal resource for researchers on adhesion molecules, receptors, cell and tissue culturing, virus infection, toxicity of nanoparticles and bioreactor fouling. It can also be used to support undergraduate and Masters level teaching courses. "This is a fascinating book and it is an invaluable resource for understanding particle-particle/surface adhesion at micro- and nano- scales. I intend to keep one for my future reference and highly recommend it to my students." (Prof. Zhibing Zhang, School of Chemical Engineering, University of Birmingham, UK) 
650 0 |a Cell adhesion. 
650 2 |a Cell Adhesion. 
650 6 |a Cellules  |x Adhésivité. 
650 7 |a Chimie.  |2 eclas. 
650 7 |a Science des matériaux.  |2 eclas. 
650 7 |a Cell adhesion.  |2 fast. 
700 1 |a Kendall, Michaela. 
700 1 |a Rehfeldt, Florian. 
710 2 |a SpringerLink (Online service) 
907 |a .b31955654  |b multi  |c -  |d 110215  |e 240320 
998 |a (3)cue  |a cu  |b 240227  |c m  |d z   |e -  |f eng  |g gw   |h 0  |i 2 
948 |a MARCIVE Overnight, in 2024.03 
948 |a MARCIVE Comp, in 2022.12 
948 |a MARCIVE Over, 07/2021 
948 |a MARCIVE Comp, 2019.12 
948 |a MARCIVE Comp, 2018.05 
948 |a MARCIVE August, 2017 
948 |a MARCIVE extract Aug 5, 2017 
994 |a 92  |b COM 
995 |a Loaded with m2btab.ltiac in 2024.03 
995 |a Loaded with m2btab.elec in 2024.02 
995 |a Loaded with m2btab.ltiac in 2022.12 
995 |a Loaded with m2btab.ltiac in 2021.07 
995 |a Loaded with m2btab.elec in 2021.06 
995 |a Loaded with m2btab.ltiac in 2019.12 
995 |a Loaded with m2btab.ltiac in 2018.06 
995 |a Loaded with m2btab.ltiac in 2017.08 
995 |a Loaded with m2btab.elec in 2016 
995 |a Loaded with m2btab.elec in 2016 
995 |a OCLC offline update by CMU 
999 |e z 
999 |a cue 
989 |d cueme  |e  - -   |f  - -   |g -   |h 0  |i 0  |j 200  |k 240227  |l $0.00  |m    |n  - -   |o -  |p 0  |q 0  |t 0  |x 0  |w SpringerLink  |1 .i150269560  |u http://ezproxy.coloradomesa.edu/login?url=https://link.springer.com/10.1007/978-90-481-2585-2  |3 SpringerLink  |z Click here for access